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1.  SUMMARY

The Phase A program covered the feasibility investigation and
formulation of a methodology for power processing system modeling
and analysis. NASA and military programs planned for the next
twenty years were reviewed. The five most complex power processing
systems, namely, the Space Shuttle, Sortie Laboratory, Synchronous
Direct Bradcast Spacecraft, Solar Electric Propulsion Planetary
Spacecraft, and B-1 Military Aircraft, were selected to ascertain
that the recommended Modeling and Analysis methodology will be
adaptable to the needs of future space programs.

Existing modeling and analysis metnodblogies were reviewed, and foun
be inadequate in all areas, concerning the power processing system '
weight/efficiency optimization, performance evaluation, refiability
assessment, and cost prediction.

A methodology was formulated to facilitate the analysis and
modeling of future power processing equipment and systems. The
methodology encompasses the following specific concerns:

) Computer-based design and optimization programs
capable of performing accurate equipment design
and system configuration tradeoff studies for
the identification of optimum-weight or optimum-
efficiency designs.

] Computer-aided equipment and system performance
programs aimed for evaluating all steady-state
and transient performantes with accuracy, and
equally important, with cost-effectiveness.

. A stress-control study program, in support of the
reliability analysis tools to be developed, that
will ensure the within-rating operation of all
power processing components, in magnetic-semi-
conductor hybrid converters and inverters. The



stress control should be effective during steady-
state and, more important, during transient oper-
ations, for without this assurance the current,
widely-used statistical failure-rate analyses, at
best, have only Timited validity.

. Cost reductions resulting from the availability
and use of the aforementioned design optimization,
performance evaluation, and reliability enhance-
ment tools as well as the cost tradeoff study tools
to be developed by this program.

Based on the methodology formulated, a six-year plan was con-
ceived for the complete and systematic development of the modeling
and analysis techniques and their supporting studies. A detailed
program plan for the first year, of the Phase B program, inclu-
ding the work statement, schedule, and the recommended level of
effort, is also presented.

The feasibility and the benefits to be derived from this
design and analysis technology development program have been
established during the Phase A program. The existing tecfinology void, if
not filled, will result in preventable penalties in the power
processing equipment and system weight/efficiency, performance,
reliability and cost.



2. INTRODUCTION

Electric Power Processing Technoloay is a rather complex
field encompassing disciplines of power conversion and control
electronics, magnetics, and analog as well as diagital sianal
processing. However, primarily due to the traditional sunnbort-
ing role it serves 1in relation to other seemingly more glamorous
technology areas such as spacecraft attitude control, computer
and communication systems, power processina technoloay develop-
ment has been hampered by the lack of rigorous desian, modeling,
analysis, and optimization technioues. VYet, by necessity, elec-
tric power orocessing has been a rapidly evolving technology;
the analytical efforts have generally been unable to keep pace
with the dearee of sophistication already achieved in power-
processing circuit development. As a result, heavy reliance on
empirical and intuitive methods has become the necessary ingred-
ient in power processing equipment desinns. Consequently, the
tendency has been for power processing designers to become hichly
competent in dealing with certain particular circuit approaches
rather than to be familiar with: (1) several approaches which
could be advantagecus for a ¢iven application, and (2) analysis and
optimization techniques which can be used to identify the optimum
approach for a given set of specification requirements. Needless
to say, such inadequacies inevitably lead to penalties involvina
eauipment weight, nerformance, reliability, and cost. In view of
the forthcomina needs for use of considerably higher levels of
power in future missions, in which brute-force and sinale-minded
power processing techniques would only result in more sianificant
" penalties than those of today, the pressing need for a comprehensive power
processina modeling and analysis nrogram cannot be overemphasized.

' Recognizina such an uraency, a one-year proaram, MAS3-17782,
"Modeling and Analysis of Power Processing Systems," was awarded
to TR by MASA in 1973. The program objective was to investicate



the feasibility in formulating a methodology to systematically
develop the needed modeling and analysis techniques. Consequently,
the one-year effort represents Phase A of a long-range analysis

and modeling program, in which the actual develonment of the needed
modeling and analysis techniques will be executed in Phase B.

The Phase A program was comprised of the following activities:

(1) The selection of five representative electric
power processing systems from those planned
for the next two decades, for which the meth-
odology developed in this program can be
beneficially applied.

(2) The identification and documentation of the
performance requirements, functional block
diagrams, and optimization criteria.

(3) The surveying and literature search of
existing power processing design, modeling,
analysis and optimization techniques.

{4) The formulation of the concepts and method-
ologies to be used in the deve]épment of
analysis and optimization techniques for
power processing systems and equipment.

(5) The planning of a detailed program and the
proposal for the actual development of the
missing mathematical tools, and the experi-
mentation necessary to substantiate the ade-
quacy of the newly developed design, model -
ing, analysis and optimization techniques.

This report summarizes all the pertinent results onbtained durina
the Phase A feasibility study proaram.



Since the theme of the Phase A prooram was the formulation
of methodology, Tasks (4) and (5} represent the major output of
the Phase A study, with system weight/efficiency, performance, reliability,
and cost as the four primary areas of concern. Among the hiagh-
1ights of the study results are:

¢ The methodology formulation and the identification
of a candidate computer technigque to implement the
overall weight or efficiency optimizatibn of a power
processing equipment

o The identification of accurate and cost-effective
analytical means to achieve prediction of switching-
requlator performance characteristics.

e A discussion of the current weakness in reliability
assessment, and the methodoloay formulation to en-
hance the reliability analysis and to improve equip-
ment reliability.

® A discussion on how a successful analytical nroaram

on optimum weightfefficiency, performance, and reliability
can result in minimum equipment cost.

e The formulation of a six-year long-range Phase B
nrogram to develop the modeling analysis techniques
needed for future aerospace systems.

" The results of the five aforementioned Phase A study activities
are discussed respectively, in Sections 4 throush 8. In addition, a
detai]ed'p!an for year=1 of the multi-year Phase B program is given
in Section 9, which contains the statement of work, the nroaram
schedule, and the recommended manpower level,

The major conclusions of the Phase A proaram are presented in
Section 10.

Technical details such as equipment specifications and block
diacramé, along with analytical examnles including component and
circuit desion eauations, and computer ontimization and simulation
programs, are reserved for presentation in Section 11, Appendices.



3.  TERMINOLOGY

Certain basic terms frequently used 1n this report are
summarized as the following to facilitate terminology clarifi-
cation.

Power Processing Components (PPC's):
Electronic parts such as magnetics, semiconduc-
tors, capacitors, resistors, etc,

Power Processing Fﬁnctions.(FPF's):

An aggregation of PPC's to perform a given duty
or operatfon. Examples include: input filter,
power switch drive, ete,

Power Processing Equipment (PPE):

A coherent combination of many PPF's to satisfy
certain input/cutput compatibility. Examples
include: 1ine regulator, dc to dc converter, etc.

Power Processing Systems (PPS's):

A combination of many PPE aimed ta fulfill the
electrical source/load compatibility of a given

spacecraft. Examples are: shuttle PPS, sortie
lab PPS, etc.

Power Processing System Configurations

The various combinations of the PPE that can be
used to satisfy a given system compatibility
requivement.

Performance Characteristics

PPS and PPE steady-state and transient behavior
that are pertinent to the control, regulation
and protection of the lToad equipment and the
PPS or PPE itself.

Design Optimization

To obtain minimum weight or maximum efficiency
for a PPS or a PPE.

Computer Simulation

The use of computers to actually portray the
microscopic aspects of equipment duty cycle
switching,

Computer Analysis

The use of computers to perform calculations
based on prescribed equations or expressions.



4, PHASE A SUMMARY REVIEW
TASK 1. POWER PROCESSING SYSTEM (PPS) SELECTION

4.1 INTRODUCTION

The objective of Task 1 was to select a maximum of five
most representative aerospace power processing systems (PPS's),
for which the modeling and analysis methodology was to be for-
mulated in Phase A in preparation of its complete development
in Phase B,

During Task 1 of Phase A there were two PPS selection
approaches considered based on: (1) existing and past PPS's,
and (2) the PPS's currently in the development and planning
stage. Approach #2 was selected as more preferable for the
following reasons:

(1) The five PPS selections represent the different
basic PPS types, planned for the next two decades
for which the analysis and modeling techniques to
be generated by the development program would yield
a greater measure of success in achieving maximum pay-
Toad weight, higher reliability, improved perfor-
mance and significant cost savings,

(2) The selection of future PPS's allows the system
study to take into account the forthcoming needs
for considerably higher levels of power, which
impose different component and equipment design
constraints than those encountered in the exis-
ting PPS's. Identification of new equipment and
technology requirements is thus possible, which
in turn, allows NASA to prepare the plans for
the necessary development programs consistent
with overall cost effectiveness,



(3)

(4)

The technology in power processing design has been,

by necessity, rapidly evolving. The rate of evolu-
tion is further enhanced from impetus provided by

the introduction of new and improved power switching
components. Selections of future PPS's thus allow
one to keep pace with the state-of-the-art PPS design,

‘and to be free from obsolete components and designs.

Past programs generally aimed for weight, efficiency,
reliability and performance, with the cost factor
occasionally roaming in the background. The obvious
trend of increasing sensitivity on future PPS cost,
however, certainly would piace somewhat different
emphasis on the design philosophy and system configur-
ation. These differences can only be adequately re-
flected in an analysis and modeling program aimed for
future applications.

Consequently, despite the fact that existing PPS's

tend to provide more readily-availahle documentation as
well as fabricated hardwares for analysis verifica-
tion, the four overwhelming advantages stated pre-
viously have prompted the review of future PP de-
signs as the preferred approach in the selection of
representative PPS's for the modeling and analysis
program.

4,2 SELECTION OF THE FIVE POWER PROCESSING SYSTEMS

The selection of the five PPS's was based on the following

criteria:

Systems were selected to include both NASA and
military future space flight programs.

Systems were selected to include all different
power sources - fuel cells, solar arrays, bat-
teries, radioactive thermoelectric generators
(RTG's), and engine generators.



Based

(1)
(2)

(3)
(4)
(5)

Systems were selected to include both dc and
ac distributions at a variety of voltages and
frequencies.

Systems were selected to represent future trend
of high power demands.

While cost is a common denominator for all the
PPS's selected, other PPS design constraints
entered into the selection consideration inclu-
ded reliability, maintainability, and the minimum
design and fabrication time allowed for the PPS.

on these criteria, the five selected PPS's are:

The Space Shuttle

The Synchronous Satellites (including the near-
earth orbit satellites similar in design).

The Planetary Satellite

The Sortie Laboratory

The Military Aircraft

A survey of NASA and military future space flight programs,

along with

concise descriptions of the five specific PPS's selec-

ted, can be found in Appendix 11.1.



5. PHASE A.  SUMMARY REVIEW
TASK 2.  PPS DOCUMENTATION AND TRADEGFF PARAMETERS

5.1 [INTRODUCTION

The objective of this task was to lay the technical around
work for Tasks 4 and 5, Formulation of a Methodology, and Phase B
Program Plan. The task proceeded orderly through the following
sequence:

(1) Identification of the important ingredients
comprising a meaningful PPS documentation.

{2) Description of PPS configurations and clas-
" sification of power processing equipment
(PPE).

(3) Interactions of PPE with power sources and
loads.

(4) Documentation of tradeoff parameters for
the PPS's.

5.2 IMPORTANT INGREDIENTS OF A MEANINGFUL PPS DOCUMENTATION

The five important ingredients instrumental to a useful PPS
documentation, shown in Figure 1, are: (1) program design
constraints, {2) spacecraft/aircraft design, (3) power source
characteristics, (4) load equipment classification and require-
ments, and (5) PPE requirements/specifications. Further dis-
cussion on these five categories is presented in Appendix 11.2.

5.3 DESCRIPTION OF PPS CONFIGURATIONS AND CLASSIFICATION OF PPE

A PPS encompasses: (1) power source control, (2) eneray
storage control, (3) source and load power distribution and con-
trol, and (4) load power processing. For each of these fnur cate-
aories, there exists a variety of PPE. The nature of the PPE with-
in catecories (1), (2) and (4) are similar. Denendina on the soyrce/1nad
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power distribution types, these PPE can be classified as dc-dc
converters, and dc-ac inverters, ac-dc converters, and ac-ac
inverters. The fourth category, which includes breakers, fuses,
and the feeder cabling, generally finds its way into affecting
the PPE design through the impact exerted by power distribution

on the PPE requirements and the PPE protection philosophy.
Classification of the PPE in this manner identifies the cormon-

ality of equipment tvpes amona different PPS's, thus potentially
reducing the size of the analvsis and modeline orogram throuch
systematic data management of all common PPE.

A system block diagram and a detailed list of PPE classifica-
tion for all five selected PPS's are presented in Appendix 11.3.
For each PPS, the PPE are used in the following load equipment
categories: avionic, propulsion, environmental control, power
control and distribution, and payload.

5.4 DOCUMENTATION OF INTERACTION AMONG SOURCE/PPE/LOAD

Since the fundamental objective of a PPS is to provide the
necessary compatibility between power source characteristics and
load requirements, the PPS modeling and analysis cannot be success-
ful unless there is full recognition of the interactions among the
source, the PPE within the PPS, and the loads. These interactions
exist for all five PPS's selected, and are given in Appendix 11.4.

5.5 PPS TRADEQFF PARAMETERS

Reliability, weight, and efficiency have always been the
major tradeoff parameters for past PPS's. In future applications,
the cost factor is becoming increasingly important. The expected
primary optimization parameter for each selected PPS has been
identified and listed in Table 4 of Appendix 11.1.



6. PHASE A.  SUMMARY REVIEW

TASK 3. DOCUMENTATION OF EXISTING DESIGN, MODELING AND
: - ANALYSIS TECHNIQUES

6.7 INTRODUCTION

The objective of this.task is to conduct a review of avail-
able technical journals, NASA and other government reports re-
garding the design, analysis, modeling and optimization of PPS's
and PPE. It is hoped that through this survey of available en-
gineering tools, those applicabie can be utilized in Phase B
of the analysis and modeling program.

In general, the survey revealed scant literature concerning’
PPS analysis and modeling. Although to a Tesser extent, there
has also been a lack of organized effort to develop rigorous
models for all PPE types. These evidences substantiate, at least
from the viewpoint of open literature, heavy empirical and intui-
tive reliances as the basic ingredients in the past and existing
PPS development. In view of the forthcoming needs for consider-
ably higher levels of power in future PPS's, in which brute-force
design techniques would only result in unbearable weight and cost
penalty, the significance of the subject program cannot be over-

emphasized.

In contrast to the scarcity of PPS and PPE modeling and
analysis effort, rather sophisticated computer techniques do exist.
While not developed specifically for PPS or PPE design and anal-
ysis, these techniques can, nevertheless, be readily adopted for
that purpose once mathematical models and equations are generated
to adequately describe the PPE and the PPS.

The survey of existing design, modeling, analysis and computer
techniques is documented in the following categories:
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(1) PPS and PPE power circuit design equations and
mathematical modeling, with emphasis on weight
and efficiency.

(2) PPE performance analysis to identify equipment
steady-state and transient characteristics.

(3) Available computer techniques to aid the design
and analysis of categories (1) and (2).

A summary review for each category is given in the following
section. The more detailed documentation is reserved for presen-
tation in the appendices, Section II.

6.2 PPS AND PPE POWER CIRCUIT DESIGN, MODELING AND ANALYSIS

In this category, the key findings on existing modeling and
analysis techniques can be divided into: (1) power processing
components, (2) power processing functions, (3) power processing
equipment, and (4) power processing systems.

6.2.1 Power Processing Components (PPC's)

The PPC's exerting major impacts on PPE reliability and
weight are semiconductors and magnetics.

¢ Semiconductors: Transistor and rectifier steady-

state operation models and elaborate computer sim-

(1] However, defi-

ulation models are available.
ciencies still exist in the analysis and modeling
of transient phenomena, e.g., the transistor

second breakdown. Recently-advanced models have
shown improved qualitative understanding.[2’3]
Continued improvements are necessary for computer-

aided reliability analysis.



e Magnetics: Optimum design for inductors and
transformers has been attempted, and has been
mostly limited to the selection of the minimum-

[4.5,6] An improved opti-

weight magnetic core.
mization constraint used is an overall minimum
combined weight for (1) the designed'magnetics,
and (2) the portion of the source (e.g., solar
cells) weight necessary to supply the loss in the
magnetics. Using the method of Lagrange Multi-
plier to achieve a closed-form magnetics design,

the detailed analysis is presented in Appendix 11.5.

6.2.2 Power Processing Functions (PPF's)

The PPF is defined as the aggregation of a number of PPC's
in performing a given circuit function (e.g., an input filter)
within a PPE. In an attempt to cover a wide power, voltage
and frequency range for various applications, previous PPF
analysis has mostly resorted to the "parametric study" approach.
An example of parametric data and format of expression generated
on a past study program[7] is presented in Appendix 11.6. Such
an approach, while providing certain utility in PPF design, suffers
from a serious drawback in practical applications. First, the
numerical parametric data, based on available component capabilities
and design techniques at the time of the study, easily becomes ob-
solete with the advent of new components and improved designs.
Second, the interdependences among the various PPF's within a given
PPE are ignored in the study of separate PPF's.

6.2.3 - Power Processing Equipment (PPE)

The PPE is defined as the combination of a number of PPF's
in nerformina a given eauinment function {e.g., a line reaulator)
within a PPS. '

While the survey did not reveal anv analvtical effort to
achieve a PPE desion specifically antimized for a civen desian
constraint, work was renorted in which the overall PPE charac-
teristics such as the PPE weiaht, loss, and failure rate were
obtained from the cumulative effect of the individual PPF nara-

"
metric data.“gj

15
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An example of this type of PPE analysis is given in Appendix
11.7, in which the weight, loss and failure rate of a buck-type
line regulator are graphically expressed as the accumulation of
the corresponding PPF characteristics, using the switching fre-
quency as the independent variable. Such an analytical approach
suffers from the same drawback as previously stated for the PPF
parametric study, namely, its diminishing utility with the evolving
power processing technology. ‘Furthermore, it is handicapned hy
a basic weakness in that it fails to take into account the close
interdependences among the constituent PPF's of the PPE: namely,
the impact of selecting a design approach for the implementation
of a given PPF is invariably felt by all other PPF's within the
given PPE. For exampie, the input filter can be highly dependent
on whether the output filter inductor is designed to operate with
a continuous or a discontinuous current. While there has been a
lack of optimization effort regarding a complete PPE, well-conceived
computer-aided designs and_graphics applied to several basic power
stages were reported.[g’]

6.2.4 Power Processing Systems (PPS's)
A PPS is comprised of a number of PPE.
The generation of accurate PPE characteristics regarding weight,

loss and reliability has been fundamental to the PPS analysis and

mode]ingg11]

However, the earnest endeavor there was to develop
elaborate PPS computer programs rather than accurate PPS and PPE
models. No matter what psychological and practical solaces one
might derive from these past computer-oriented programs, the fact
remains that there is a dearth of readily-applicable PPS modeling
and analysis techniques.

6.3 PPE/PPS PERFORMANCE ANALYSIS

Two principal objectives in the analysis of a PPS design are:
(1) to determine performance, i.e., output dc reoulatinn, output
impedance, line rejection, etc., and (2) to determine



stability against oscillation., To this end, the literature sur-
vey has shown that there has been very little attempt at synthesis
of the diversified design and analysis approaches. A basic reason
for this is perhaps the difficulties inherent in the understanding
and analysis of complicated nonlinear control systems.

In the absence of established and well-accepted catalogs of
design concept and analysis techniques, works in the power proces-
sing field tend to adopt an arbitrary design concept to meet
specific requirements, usually, it seems, determined pri-
marily by previous experience and familiarity with the chosen con-
cept rather than by any objective criteria concerning the "optimum"
approach, The same is true with regard to choice of analytic tech-
niques. The present status of the field, therefore, is that of a
number of conceptual implementations and a number of analytical
techniques available, each having been partially developed, but
with no comparative information.

6.3.1 PPE Control Circuit Design Implementations

While the number of alternative power circuit types and varia-
tions of these types is quite Targe, there are only two basic clas-
ses of control mode:

(1) Duty Cycle Control With a Timing Reference
¢ Constant TOn
¢ Constant Toff
o Constant T_ = Ton t TOff (clocked, driven)
o Constant E,.T .

(2) Free-running (constant ripple, limit cycle,
bang-bang)

The Ton and TOff refer to the ON and OFF times of the power
switch, TS the switching period, and Ei the input voltage.

17
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formance and stability analysis is that of the describing function:

These contro]l modes can be implemented through innumerable
individual control circuits proposed and in use today. Generally
speaking, they can be categorized into two types of contro) mech-

anization:

(1) Single-Loop Feedback Control
(2) Multiple-Loop Feedback Control

Regardless of the type of control mode or mechanization used,
the control system must be able to convert an ana1og amplified
error signal into a related discrete time interval to achieve duty-
cycle control of the power switch. This functional relationship can
be accomplished thraugh four modulation philosophies:

(1) Non-integrating explicit
(2) HNon-integrating implicit
(3) Integrating Explicit
{4) Integrating Implicit

A more detailed description concerning the control mode, con-
trol mechanization, and modulation philosophies, is presented in
Appendix 11.8,

6.3.2 PPE Performance Analysis Methods

The PPE performance analysis includes: (1) quasi-linear tech-
nique, (2) nonlinear analysis, and (3) computer simulation.

The conceptually simplest quasi-linear technique in past per-
[12,13]
Here, the accuracy of analytical results deteriorates as the signal
frequency approaches the PPE switching frequency. A more complex and
less versatile quasi-linear technique employs the Z-transform method

of sampled data systemsg14’15] These methods have been partially
successful in analyzing PPE in which the MMF in the output-filter
inductor never reaches zero during steady-state operations. The case
where the inductor MMF vanishes during part of the switching cycle

has, so far, been unsolved.



While the two aforementioned quasi-linear methods are based
on frequency-domain characterization, the nonlinear methods are
applied directly in the time domain. A well developed technique
is the phase-plane method. However, its application in PPE per-
formance and stability analysis has been limited to buck-type
line regulators operated in a free-running control mode using a
bistable hysteretic tripper.[16’17’18] Another major area of
existing nonlinear analytical effort has been the limit-cycle
analysis of switching transients for a family of parallel inver-
ters,[]g’zo'Z]] which provides original and systematic insight
into inverter characteristics such as inverter starting and
switching spﬁkes.

The third analysis category, computer simulation, has served
largely as an adjunct to paper analysis, although recent work has
demonstrated the feasibility of a complete PPE computer simulation
in p]acé of a solely analytical treatment for performance evalua-

[22] .

tion.
A more detailed description concerning the documentation of
the PPE performance analysis methods is given in Appendix 11.9.

6.4 REVIEW OF COMPUTER TECHNIQUES

Although not specifically developed for PPE and PPS calcula-
tions, all computer programs are readily adaptable for such appli-
cations. These programs can be categorized as follows:

6.4.1 Optimization Programs for PPE and PPS Weight, Efficiency, etc.

The basic requirement here is to solve simultaneous nonlinear
algebraic equations to obtain a complete PPE {or PPS) design opti-
mized for a given design constraint such as weight, efficiency and
reliability.

19
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The Sequential Unconstrained Minimization Technique (SUMT)
digital computer program developed by Research Analysis Corpora-
tion, McLean, Virginia, was identified as a potential engineering
too1.l:23:| The identification of this technique was supported hv
several illustrative examples completed at TRM under Phase A of
this program. An example will he described in Section 7, For-
mulation of a Methodoloay.

A concise introduction to SUMT is given in Appendix 11.10,

6.4.2 Simulation Programs for PPE and PPS Performance Evaluation

The available computer simulation programs include the following:

[ Analog Computer
) Digital Computer Programs:
TESS (TRW Engineering System Similator)
CSM/0/P (Continuous Systems Modeling and
Optimizing Program - IBM)
The two digital computer programs have equivalent capabilities.
An example of TESS application is presented in Section 7 of this
report, while that of CSM/0/P can be found in a recent Titeraturegzzj
Further description of these programs is reserved for Appendix 11.10.

6.4.3 General Network Analysis and Computation Programs

The general network analysis programs include the previously-
described TESS, the ECAP (Electronic Circuit Analysis Program}, the
ICAP (a revised version of ECAP}, the FORTRAN and the BASIC. Their
further descriptions are also summarized in Appendix 11.10.



7. FORMULATION OF METHODOLOGY FOR PHASE R

7 .1 INTRODUCTION

The primary objective of this task is to formulate a method-
ology for modeling and analysis of power processing equipment (PPE)
and systems (PPS's) with recard to their efficiency, weight,
performance, reliability and cost. The utility of these madeline
and analysis techniques is to provide the PPE and PPS desidners
with engineerina tools to analyze and simulate the available tradeoffs
in order to arrive at an optimum PPE design consistent with the
specified PPE requirement/specification and optimization constraints.
By so doing, heavy empirical as well as intuitive reliances need
no longer be the prime ingredients in designing the PPE and PPS,
and significant improvements in future high power PPE and PPS
development can be methodically realized.

The potential benefits, as previously stated, are expected
in the general areas of PPS efficiency, weight, reliability, ner-
formance and cost. Conseouentlv, a general discussion on the present
inadequacy in the areas of PPS and PPE weiaht, reliabilitv, nerfor-
mance and cost is in order, and is vresented in Section 7.Z2.

Based on the general inadequacies, the needed specific analy-
tical improvements are outlined in Section 7.3,

Guided by these specifics, the necessary groundwork for the
methodology formulation is presented in Section 7.4,

Thus, with the problems identified and the foundation of carry-
ing out the approach properly laid, the detailed methodology for
PPS modeling and analysis is outlined in Section 7.5.

21
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7.2 PRESENT ANALYTICAL INADEQUACIES IN PPE/PPS WEIGHT, EFFICIENCY,
RELIABILITY, PERFORMANCE AND COST

7.2.1 Weight and Efficiency

To anyone designing PPE/PPS, recurrent yearnings for the
following analytical tools are evident during his weight and
efficiency analyses:

(1) There is a need for accurate and readily-available
power processing component . (PPC) data. Power .
magnetics core losses and semiconductor switching
characteristics are two representative examples.

(2) There is a need for accurate PPE/PPS analytical
models that are computer programmed to include all
interdependent power processing functions (PPF's)
so as to eliminate laborious iterations of various
functional designs during PPE/PPS weight-optimiza-
tion tradeoff studies.

(3} While the PPE control circuit used to govern the
power-circuit operation contributes to only a minor
portion of the PPE weicht and Josses, its impacts an
the power-circuit design, in terms of the method
of duty-cycle contrel (i.e., constant on time, off
time, frequency, etc.), are not minor. Consequently,
the validity of weight and efficiency ontimization
among different PPE candidate configurations must
be supplemented by the analysis of effects of dif-
ferent duty-cycle control methods when applied to
each PPE configuration. There has been, however,
only scant organized effort in this regard dealing

with analysis rather than optimﬁzation.[g’]OJ



(4) There is a need for an accurate assessment of the
weight impact of PPE packaging, which is itself a
function of PPE efficiency, and which contributes
to a significant portion of the fabricated PPE weight.

Presently lacking these supports, the state-of-the-art weight
and efficiency optimization study preceding the selection of a
given PPE (or PPS) configuration has been time-consuming, yet
laralv without suhstance, as it is often based on inaccurate data.
Most of the time it does not take into account the interdepend-
ences amona the constitutina PPF's within a niven PPE. It cenerallv
is based'dn a aiven control annrnach familiar to the individual
desianer, whose knowledae of nackaaino mav be rather sunerficial.

7.2.2 Reliability

In the field of power processing, perhaps the most lagging
aspect at present is that of reliability. It is not unusual that
the reliability of an operational equipment fails to achieve the
level anticipated from consideration of the reliability of the compo-
nent devices themselves. Symptoms of a failed PPE too many times
include one or more failed components - a manifestation of the
fact that the circuit functions performed by these components
make them targets for high-energy dissipation during, in most
cases, electrical transients. These transients may be generated
from the cyclic high-frequency switching operation associated
with any magnetic-semiconductor hybrid switching regulator, or
they may be consequences of step PPE line and load disturbances
including converter starting and sudden output short-circuit.

In these regards, it may be on such seemingly minor points as
transformer winding techniques, leakage inductance, winding capac-
itance, magnetics saturation characteristics, etc., that the
reliability or satisfactory performance of the PPE hinges. Thus,
in the high-power, magnetic-semiconductor, transient-prone PPE,
more so than in many other electronic equipment, there is a re-
quirement for a high level of insight on the part of the designers
into various effects of the transients. Present effort in-this

23
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[24]

regard is emerging; yet gravely insufficient. Failing to
attend to the transient operating details, the reliabiTity fiqure,
based on the aggregation of component statistical failure rates,

by assuming all PPC's are operating within their respective ratings,
has 1ittie or no validity.

In spite of this shortcoming, past and existing PPE often
achieve the operating reliability through PPE and PPS redundancy,
monstrous component derating, and perhaps occasional sheer provi-
dence. To sustain these luxuries is becoming 1ncreasingiy diffi-
cult, particularly in view of the high-power ratings of future PPE
and PPS's.

7.2.3 Performance Characteristics

Two principal objectives in PPE and PPS performance analyses
are to determine (1) static and dynamic output regulation under
conditions of steady-state switching operation as well as step or
sinusoidal line and load changes, and.(2) stability against oscilla-
tion. These performance characteristics depend, to a large extent,
on the quality of the PPE or PPS control system.

The PPE control system inherently employs many nonlinearities.
When faced with analysis of such systems, one has three choices:
(1) to extend the linear method in the frequency domain, (2) to
treat each nonlinear problem. in the time domain on an individual
basis, and (3) to use computer analysis and simulation.

The first category, the linearization of the nonlinearity to
facilitate the extension of linear methods, can be regarded as ob-
taining an exact solution to an approximate problem. The entire

arsonal of general linear techniques is then applicable. Due to

PPE designers' familiarity with linear theories and their nreoccupa-
tion with frequency-oriented performance characteristics such as
audio-susceptibility and output impedance, analysis in the fre-
quency-domain has so far commanded the major effort of PPE and PPS
control analysis. However, since the problem is only an approxi-
mate one to start with, the solution,even rigorously derived, is
incomplete and its range of validity may not easily be defined.



An important example of this subtlety is that the Nyquist stabil-
ity criterion, while necessary and sufficient for stability of a
linear system, is merely necessary but not sufficient in a non-
Tinear system.

In the second category, each nonlinear analysis problem is
essentially unique because known methods of solving nonlinear prob-
lems usually have restricted generality. Although exact solutions
in terms of given mathematical models can always be obtained by
numerical techniques, usually some approximations are involved in
order to extract any qualitative generality. Consequently, the
second category can be regarded as obtaining an approximate solu-
tion to an exact problem. Mainly due to the discreteness of this
analysis technique with which the PPE designers suffered from a
lack of intimacy, the use of this method in PPE and PPS performance
[25] However, the exclusive capa-

analysis has been extremely rare.
bility of nonlinear analysis in retaining those properties that
may be inevitably lost through the linearization process engaged
in the linear analysis has provided the necessary impetus in
conducting more nonlinear analysis in the future.

The third category, computer simulation, has often served as
an adjunct to paper analysis. This supporting role is expected to
continue in the future.

To conduct a PPE or PPS performance analysis that is accurate,
complete, and cost-effective, an optimum approach is expected to be
based on a time-domain analytical model, in which all non1inearr
operating constraints are expressed, in b1osed mathematical rela-
tions, for computer calculation.

25
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7.2.4 Cost

The significance of PPE and PPS cost has been somewhat latent
in the past history of space power processing. However, the rising
sensitivity to cost has made it_a major future design constraint.
Due to the past latency, there has been no systematic effort on
generating a PPE or PPS cost model. In conjunction with the fact
cost often involves such intangibilities as reguirement changes,renair-
ability and quality control philosophy, efforts of future cost anslysis and
optimization, if conducted at the initial stage of the modeling
and analysis program when no realistic design requirements and
tradeoff programs are available, are likely to be arduous, yet
i11-defined and futile. Consequently, analysis and optimization
involving cost should be attempted only at the later stage of the
Phase B Modeling and Analysis.

Due to the long-term utility of future PPE and PPS's such as
those of the Shuttle program, the cost consideration should include
not only the initial PPE and PPS. design and production (which has
been expressed traditionally through the "parts count” involved)
but also the maintenance cost and the operating cost.

7.3 SPECIFIC ANALYTICAL IMPROVEMENTS

From the foregoing discussions, specific improvements needed
in the PPE and PPS Modeling and Analysis can be 1isted as the follow-
ing:

7.3.1 Weight and Efficiency Analysis

(1) The analysis upgrading must start with improved
power processing component (PPC) data, with
emphasis placed on the following information:

e The core loss as a function of switch-
ing frequency and flux excursion for
various core materials under asymmetri-
cal squarewave excitation.



e The switching loss of the power switches,
and the effects of recently-developed en-
erqy-recovery networks on the switching

[25]

10ss.

e The realistic worst-case equivalent series
resistance (ESR) of solid and foil tantalum
capacitors,

@ The availability status and reliability
assessment of high-power Schottky dﬁodes.[ZG]

(2) Armed with the correct PPC data, one can then proceed
to achieve weight and efficiency optimization for the
PPE and PPS. Specific improvements required are the
following:

e The mathematical formulation of (1) power
processing function (PPF) design based on
a given set of PPE input/output requirements
and (2) the interactions among the interdepen-
dent PPF's such as jnput filter, power stage
modu]atibn, and the output filter.

e The mathematical formulation to represent
different weight and efficiency impacts exer-
ted on the PPE by the implementation of dif-
ferent duty-cycle control methods.

o The generation of a set of guidelines in de-
termining the weight impact due to PPE pack-
aging as a function of the power capability,
the voltage rating, and the operating envi-
ronment.

e The elimination of any overspecified PPE require-
ments to minimize the weight penalty. For exam-
ple, requiring the input filter of a 10KW switch-
ing regulator to meet MIL-STD-461, Notice 1, con-
ducted interference at a 10KHz switching frequency
is, needless to say, sheer absurdity.
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7.3.2

Reliability

A truly meaningful reliability analysis lies in the complete
assurance of 1imiting the electrical stresses on all PPC's to

within their respective ratings during not only the steady-state

operation, but more important, during transient operations. Such
assurance can be achieved through the following complementary de-

sign and analysis approaches:-

Stafe-of-the-art power circuit design including
the peak-current 11miter£26] the energy-recovery
network, and in some instances the use of inher-

[27]

would completely bring the operating current in

ently current-limited power inversion stages

the various PPC's under control.

The high-frequency models of magnetics (both in-
ductors and transformers) and power semiconduc-

tors (to the forward and reverse regions) need

to be developed to facilitate a complete magnetics-
semiconductor hybrid circuit analysis. The devel-
opment of these analytical models is 1ikely to be
difficult. However, only through such an analysis
can the semiconductor dissipation characteristics
and voltage spike during switching be quantitatively
assured. |

Furthermore, it is expected that valuable outgrowth of these

models would

concern another type of reliability - the starting of

a self-oscillating type of parallel inverters. The topic will be
discussed further in Section 7.3.3.

7.3.3

Performances

Specific analytical improvements in PPE and PPS performance
evaluations can be categorized into four areas. They are: (1)
static and dynamic output responses, (2) stability, (3) PPE start-
ing into the desired 1imit cycle oscillation, and (4) switching
pattern and phenomenon.



Static and Dynamic Oufput Responses

The improvements needed in this area include the following:

e . In addition to continuing the frequency-domain
linearization analysis techniques described in
Section 7.2.3, work must be initiated on the
use of the time-domain nonlinear analysis tech-
niques to uncover, if any, the deficiencies
associated with the linearization process.

¢ Select the most applicable analysis technique to
develop comparative information for the various
control circuits in existence. The information
should also include the effect of differernt meth-
ods of duty-cycle control on the PPE performance.

. Identify the "optimum" control approach and rec-
ommend standardization of PPE control circuit.

(] Formulate the normalized control-circuit design
as a function of power circuit design.

Stability

In contrast to the frequency-domain characterization of the
quasi-linear methods, the nonlinear discrete time models are
applied in the time domain, and emphasis is therefore neces-
sarily placed at or near the switching frequency. Consequent-
1y, the nonlinear methods are most useful in examining the

stability, and should be pursued vigorously in Phase B.
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© PPE Starting into the Desired Limit Cycle Oscillation

The starting abnormalities including limit-cycle oscillation
at either higher or lower frequencies than those desired,
happen frequently in self-oscillating types of converters.
Recent work has begun to focus attention on these problems
by studying the starting of resistive-loaded 1nverters.[19’20’2]]
Additional efforts are needed to extend the study into supnlying
reactive loads. The study should also include the converters,

j.e., with the addition of rectifiers and filters.

Switching Patterns and Phenomena

This area of study, applied to high power magnetic-semiconductor
hybrid switching circuits, is virtually non-existing at present,
for the simple reason that there has been no established high-
frequency equivalent-circuit model for the magnetics or the
transistors. However, a thorough understanding here is essential
in terms of gaining confidence in the capability of main power
switch(s) to withstand the peak energy dissipation during switch-
ing. The problem is by no means simple, as the switching is
heavily dominated by the stray parameters such as leakage induc-
tances and junction capacitances. Computer simulation of the
actual switching circuitries is perhaps a sensible way to gain
qualitative understanding, provided that the intrinsic char-
acteristics of the power transistors can be adequately portrayed.

7.3.4 Cost

Beina a functinn of multinle factors, supborting studies are
needed tn clarify the many intangibles and tradeoff possibilities.
Nne can state at this time that to start with a successful analvsis
and modelina nroaram leadina to a clearlv defined, compietely auto-
mated, optimum PPE and PPS desicn will certainlv be most effective
in enhancina the cost reduction of future PPE and PPS's. Later,
the modeling and analysis proaram shall be expanded and refined
to tradeoff the overall proaram cnst, the benefits and nenalties of
component, function, or equinment redundancy versus modularization,
built-in test equipment and maintenance, etc.



7.4 GROUNDWORK NEEDED FOR PPE AND PPS MODELING AND ANALYSIS

For the modeling and analysis program to proceed in a systematic
and orderly fashion, the assembly of certain basic groundwork is
needed. Strictly speaking, this groundwork of information gathering
can be cbnsidered as part of the methodology formulation. However,
in the interest of separating the necessary preliminary support from
the actual methodology of modeling and analysis, the supporting work
is included in this section, preceding the description of the meth-
odology itself. |

The enactment of the groundwork assembling will be accomplished
through the following sequence. First, the PPE and PPS under study,
their requirements, and their optimization criteria, must be estab-
lished. Various power processing functions (PPF's) forming the PPE
are then classified. The designs of these PPF's are generally
interdependent. The requirement specifications and the interdepen-
dences, along with critical power processing component (PPC) char-
acteristics, become basic inputs to each PPF. Combinations of these
PPF's form a PPE, which, in turn, leads to the formation of a PPS,
for which the modeling and analysis methodology will be formulated.

7.4.1 Identification of PPE Requirement Specifications and
Their Interactions

The fundamental building block for a PPS is the PPE. To those
engaged in PPE tradeoff studies and design optimization, it is appar-
ent that the study effort must start with a set of well-conceived
PPE specifications. These reauirements dictate desion interac-
tions among the internal PPF's of a PPE, and therefore define the
design constraints of each individual PPF. With the advent of future
high power PPE, realistic requirements are yital in achieving minimum
design penalties and PPE incompatibilities. -As a matter of fact,
part of the utility of the modeling and analysis program output is to
be able to vividly expose the severe penalties incurred from unreason-
able specifications,
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A detailed requirement 1ist including power source character-
istics, load characteristics, PPE output power quality, internal
control, command, and protection feature, EMI, mechanical and
thermal design constraints, and reliability, is presented in Appen-
dix 11.,11. Complex as it may seem, each item listed therein is
related to the design of at least one specific PPF.  In Phase B
this 1ist will be thoroughly screened for the selected PPS's, and
those key items that have significant impacts to PPE weight and
efficiency, reliability, and cost will be identified.

It should also be emphasized that these requirements generally
interact among one another., Any misunderstanding in these interac-
tions can either generate penalties in the PPE design or cause the
PPE to miss the specified requirements. These interactions are
clearly identified in Appendix 11.11.

7.4.2 Identification of PPE Optimization Criteria

While weight and efficiency, reliability, performance, and
cost are the four basic concerns of the modeling and analysis program,
the performance optimization will more likely be an outgrowth of the
control system analysis rather than an influential source dictating
its own methodology formulation. Consequently, the discussion of
optimization criteria will be Timited to weight, efficiency,
reliability, and cost.

Weight has been a primary design criterion in many previous
NASA programs, as the PPS weight is often limited by the capability
of the launch vehicle. This primary position may be diminishing in
certain future applications. Since snecific improvements concern~
ing weight and efficiency have Feen presented in Section 7.3.1, it is
merely iterated here that the PPS weicht/efficiency ontimization will
be aimed at achieving a minimum PPS combined weiaht includina: (1)
all PPE, (2) power source and storace weinht penality due to losses
in the various PPE, and (3) the structure weiaht penalty due to the
thermal control requirement.



Reliability optimization usually includes the consideration
of (1) the allowable mean time between failures, and (2) no single-
point system failure. Its achievement is most soucht after in
manned and lona 1ife missions, where crew safety and lack of main-
tenance are, respectively the primary concern.

Regarding the PPE/PPS cost optimization, which anplies to most
future systemé, the five cost categories that must be considered
are: (1} déve]opment, (2) desian, (3) production, (4) operation,
and (5) maintenance. The most siagnificant development costs will
be associafed with certain snmecial PPE involving simultaneously
high voltage and high power. Most PPE are expected to fall into
the cétegory where existing design techniques are available. Both
the design cost and the production cost can then be estimated based
on the number of parts within the PPE electrical design. The PP3S
production cost includes the extra power generator and energy storace
costs required to supply the losses in the PPE's. The spacecraft '
operational cost includes the cost of the fuel cell expendables to
supply the PPE losses, and the jet fuel to provide the PPE losses
in aircraft operations. The maintenance cost as a separate entity
is made nossible bv the future canability of servicind the PPE in
space. The cost will be related to the PPE oriaginal cost and the
failure-rate characteristics.

As stated previnusly, the PPS optimization effort to-date have
been based on inaccurate PPE data. - Extensive desion time and hiah
cost to meet the PPE and PPS requirements have been nrevailina rather
than the exception. It is to the minimization of the effort and the
cost associated with future NASA and military PPS's that the onti-
mization techniques develoned in this modelina and analysis procram
will be dedicated.

7.4.3 Tdentification of Rasic Power Processino Functions (PPF;s)

The PPF's can be arouped into power functions and control func-
tions. The nower function is associated with the main power flow
from the PPE innut to its output, which the control function manaces
in accordance with certain pre-set references and commands. Of the four
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areas of analysis and modelina concerned, weight and efficiency
are overwhelmingly related to the power functions and nerformances
to the control functions. Both nower and control functions are,
however, intimately associated with reliability and cost.

The basic power functions include power modulation, inversion,
transformation, rectification, passive filtering, RFI filtering,
and power control and fault isolation. The basic signa]lfunctions
include sensor, reference, analog and digital signal processors,
power switch interface, digital logic function, relay driver, and
telemetry, Definitions and detailed sub-division of these functions
are presented in Appendix 11.12. The classification and definition
provide a common terminology among PPE designers, which is a'prereq—
uisite for realizing the utility to be provided by this modeling and
analysis program,

The PPF's presented are the bUi]ding blocks for all PPE; the
PPE modeling and analysis is based on the detailed mathematical
formulation of each PPF. With the fundamental significance of the
PPF thus asserted, variations in PPF combinations to form different
PPE are discussed next, '

7.4.4 Formulation of PPE Block Diagrams

A 1ist containing general types of PPE for both dc and ac PPS's
is given in Table 1. The block diagrams, based on different com-
binations of the PPF's defined previously, are included in Appendix 11.13.

During the course of the Phase B study, special load equipment
such as TWT and ion engines will undoubtedly be encountered, which
will necessitate the generation of dedicated PPE block diagrams to
satisfy individual equipment requirement specifications.

The Block diaaram establishes the basis for the requirement
specification of each PPF. The interdenendence amono the PPF's,
which was mentioned previously in Sections 7.2.1 and 7.3.7, can
be intrinsically linked throuch the defined PPE reocuirements. This



TABLE 1. POWER PROCESSING EQUIPMENT LIST

DC Line Regulator (Dissipative)

DC Line Regulator (Switching)

pC-DC
DC-DC
DC-DC
DC-AC
DC-AC

AC-DC
AC-DC
AC-DC
AC-AC
AC-AC

Converter (Preregulator/Squarewave Inverter)
Converter (Pulsewidth/Frequency Modulated Inverter)
Converter (Buck/Boost Configuration)

Inverter (Step Wave Form)

Inverter (High Frequency Pulsewidth Modulator)

Converter (Unregulated)

Converter Line Frequency Operation (Regulated)
Converter - High Frequency Operation (Requlated)
Inverter {Cycloconverter)

Inverter (DC Link)

Source/Load Power Distribution Unit

Feeder Line
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Tinkage will become clear from a subsequent presentation in Section
7.5. At the present time, the relevance of the interdependence is
further illustrated. The interdependence existing among the PPE
functional blocks can be defined as the impact felt by other PPF's
as a result of the design implementation of a given PPF. Unfortu-
nately, there is a dearth of information léadinglup to an effective
assessment of these interdependences. Consequently, their full im-
pact cannot be made apparent even after the completion of rather
laborious quantitative studies, thus incurring PPE cost and other
penalties. To illustrate these interdependences, the basic power
circuit of a buck-boost switching regulator is used as an example
in Appendix 11.14. Design variations for ‘the power modulation
functional main inductor in the block is shown to impact directly
on the "input'and output passive filtering" blocks, thereby exten-
ding its influence to the overall PPE.

The analysis and modeling technigues to be developed can be
most effective and useful only if they can provide a means of
achieving the optimization among'a}1 interdependent PPF's. This
is considered essential, for without which the utility of the de-
velopment would be limited to optimization at the functional level,
and would have no validity in arriving at an optimum PPE design.

~ Generally, more than one PPE configuration (i.e., PPF com-
bination) can be used to satisfy a given set of PPE requirements.
Quite frequently, definite tradeoff possibilities among candidates
require a detailed analysis before an optimum PPE configuration
can be identified. For example, a dc-dc converter to achieve vol-
tage transformation and input/output isolation can be done through
many variations that include the use of buck-boost inductive-energy
storage, quasi-sguarewave PWM parallel inverter, line regulator fol-
lowed by squarewave inverter and others. The formulation of PPE
configuration will take all these poséibi11ties into account. Sub-
sequent discussions on the methodology formulation, therefore, should



be understood to include all confiqurations rather than a singular
one arbitrarily chosen. Modeling and analysis techniques will be
generated for each configuration, with the objective of design
optimiation based on a given optimization criterion. The optimized
design of the candidate PPE condiqurations are then compared, from
which the optimum PPE desian is identified.

7.4.5 Formulation of PPS Block Diagrams

The combination of PPE to form a PPS is illustrated in a
generalized PPS-block diagram shown in Figure 2,, which includes
all PPE listed in Table 1. '

The main power source feeds the source distribution units
and the multiple load feeder lines. Each main feeder line supplies
power to the respective load power distribution units and their
associated power processor/load combinations.

An uninterrupted power system, including secondary energy
source and energy storage, supplies power to critical Toads through
its own dedicated power distribution unit. Power is sunnlied
either directly to loads using power at unregulated voltages, or
with dc-dc converters to loads using regulated dc power, or with dc-ac
inverter to loads using regulated ac power.

By generating subroutine computer programs for all blocks
within the PPS, including feeder line, source/load distribution
units, and all other PPE, Fiocure £, can be mechanized intn a com-
puter flow diagram for a generalized PPS. Notice the multiplicity
of feeder lines, converters, and inverters throughout the system,
which lend themselves to the possible use of an identical computer

subroutine.

While an optimization subroutine performed for each individual
PPE will definitely demonstrate its utility in terms of designing
an optimum PPE, it must be realized that such an optimum design
only applies to a particular set of PPE input/output requirement
specification. Thus, the utility of these subroutines will likely
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Figure 2. A Generalized PPS Block Diagram



be appreciated, to a considerably different degree, by the PPE
designer and the PPS designer,

To a PPE designer who is only responsible for the particular
PPE and who receives the equipment specifications already set by the
PPS personnel, the individual subroutine would undoubtedly be a
complete answer to his earnest request. To him, the application of
the computer programs would be convenient and direct.

To the PPS personnel who are entrusted with the selection,
among many candidates, of PPS concéptua] designs and their config-
urations, and who must dictate to the PPE designers their detailed
PPE input/output specifications, the individual optimization sub-
routines represent only a partial answer, He must now prepare a
list of candidate system configurations, the various PPE for each
configuration, and the attendant requirement specifications for
each component PPE. Then, using the subroutines as engineering
tools, he can subsequently identify the optimum configurations
from the PPS perspective, based on his evaluation of system obtimi-
zation criterion, from which he can proceed to communicate with
each PPE designer to carry out the overall system implementation,

‘To summarize this section, the necessary groundwork for con-
ducting a systematic modeling and analysis program includes the
proper identification of: (1) PPE requirements, (2) optimization
criterion, (3) the basic PPF blocks, (4) the PPE block diagrams,
and (5) the PPS block diagrams. Failure to do so would render the
program.in a confusing state, with attendant shifts in emphasis and
tacit omissions.

7.5 FORMULATION OF METHODOLOGY FOR PPE/PPS MODELING AND ANALYSIS

With all the groundwork properly laid in accordance with the
previous description, the methodology formulation of modeling and
analysis, by definition, should start with plans to develop models
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and equations. Since the power processing components and functions
(PPC's and PPF's) are the basic constitutents of the PPE/PPS, they
should be the initiation topics for PPE/PPS analysis and modeling.
While by no means complete and yet to be arranged into a coherent
unity, the PPC and PPF modeiing and analysis have nevertheless been
practiced for most existing PPE/PPS's. The methodology of organ-
izing existing PPC and PPF analyses, and conceiving new analyses,

is presented in Sections .7.5.1 and 7.5.2.

As previously stated, from the PPE/PPS weight and efficiency
viewpoint, one major weakness of past analyses would be the negli-

gence of the interdependeces among various PPF's within the'ppg, The
primary difficulity responsible for the persistence of this defect

has been the lack of identification of suitable computer techniques
capable of solving all simultaneous equations representing these in-
terdependences, without which the interdependence-conscious designers
were hopelessly handicqpped in their attempts to achieve an integra-
ted analysis. The interdependences can be formulated through the
specified input/output requirements and the interval PPF design con-
straints. The formulation, working in unison with a suitable com-
puter program identified in Phase A, will be described in Section 7.5.3.

From the practical viewpoint, the present éomputer technique of
analyzing the PPE/PPS reliability based on the aggregate statistical
failure rate of all PPC's is meaningful if and only if, that the re-
spective component ratings are never exceeded during any operation
including single-event or recurrent transients. The methodoloagy thus
should be tailored to predict and to ensure that the electrical stres-
ses on the PPC's stay within the prescribed limits. This topic is
addressed in Section 7.5.4. '

The PPE/PPS performance relates closely to the design of both
power and control circuits. The vast complexities of a PPS in terms
of various PPE nonlinearities and various interactions among the



PPE certainly would discourage a solely analytical treatment with
no computer aid. The methodoloay for performance calculated is
agiven in Section 7.5.5.

The design, development and production cost estimate of a
PPE or a PPS is dependent on the technical readiness of the desion
and development and the narts count as an important cauge. In
real 1ife, cost is also a function of such intangibles as nroaram
structure, uncontro]]ed.specificatidn changes, the worker person-

alities, etc., and few of these can be properly modeled and analyzed.

Any methodology leading to cost optimization is therefore, by
necessity, influenced by subjective judament. For this reason, the
discussion on cost presented in Section 7.5.5 will contain less con-
crete recommendations than that on weight, reliability and verfor-
mance,

7.5.1 _Formulation of a Methndolooy for PPC Modelina and Analysis

The major PPC's needed to be addressed to during Phase B of the
Modelina and Analvsis program are magnetics, semiconductors, and
capnacitors. ‘

Magnetics

With few exceptions covering snecialized high-voltaoce
applications, the overridino nreoccunation in most maq-
netics desian aiming for a aiven set of performance
specifications is to achieve either a minimum Joss for a
given weiaht, or a minimum weight for a civen loss. Im-
mediately, the followina concerns can be raised:

(1) Is there an accurate model for core loss under
asymmetrical sguarewave excitation, as a function
of frequency and flux-density excursion for different
core materials?
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(2) Is there a thorough understanding on the eddy
current Joss in the copper wire caused by flux
linkage in the wire, particularly in high fre-
quency, high current operations? Under what
conditions are the use of Litz wire mandatory
to effect loss reduction? ' '

(3) Can one determine the adequate amount of "fly-
back energy" of a square-loop core that is in-
dispensible in sustaining oscillation in so
many timing and drive applications, and yet
has so frequently been glossed over in terms of
“circuit descriptions"? Questions like these
can go on and on, each without a well-conceived
and well-documented answer.

Since power magnetics represent a major portion
of the total equipment weight and a significant
percentage of the total equipment loss whenever
switching regulators and input/output filters are
used, and since there are still vast unknows con-
cerning their design and operation (particularly
acute in view of the future high power, high fre-
quency PPE), it is recommended that a program
dedicated to the magnetics be granted. The pro-
gram can be expected to fill the present vacuum
in certain critical areas of magnetics design
which include, among others, the following items
of interest:

¢ To collect, either through analysis, or
more effectively through experiment,
the pertinent core and coppér loss data.
The variables there should include core
materials, core and coil configurations,
including Litz wire, and excitation

waveforms, frequencies, and flux excur-
sions.



To achieve an optimum magnetics design
based on closed-form analytical magnetics
design solution of simultaneous equations
representing various design and optimiza-
~ tion constraints so as to eliminate time-
consuming iterations. Reduce these solu-
tions in computer programs to facilitate
automatéd optimum magnetics design for

dc and ac filter 1nduttors, square-loop
core power transformers, and energy-storage
inductors. |

- To develop an analytical model for high-
ffequency transformers and inductors to

gain better understanding in all switching
and incidental transient phenomena, thus
enhancing the reliable operation of magnetic-
semiconductor hybrid circuits.

To address certain commonly-encountered power
processing phenomena closely related to the
magnetics design, such as the use of "flyback
energy" to sustain oscillation, the excessive
voltage spike in magnetic-semiconductor hy-
brid circuits, and the "effective inductance”
which is smaller than the designed value due
to the manifestation of small ac core losses
as a resistance shunting the inductor,

To specify test requirements to adequately
assure product repeatibility and reliability,
and to establish standard methods for mag-
netics testing in anticipation of the increa-
sing needs of higher power at higher voltage
or higher current levels.
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With the support of certain previous programs and this
program, the task of optimum magnetics design has been
initiated, Using the method of Lagrange Multipliers,
optimum inductor and transformer weights were obtained
by formulating the two constraints: (1) the core window
space is essentia11y filled, and (2) the electromagnetic
capacity of the magnetics is fully utilized. From the
analytical results obtained, for an inductor, for exam-
ple, all design parameters including the cross-sectional
area, the mean length and the permeability of the core, -
as well as the number of turns, and the combined ‘core and
copper weight are expressed in closed equation form in

terms of the inductance desired, the peak current in the
inductor, the copper wire size, the saturation flux den-
sity, the filling factor, the winding pitch factor, the
copper density, and the core density. The analytical
detail is presented in Appendix 11-15,

Semiconductors

From strictly the PPC viewpoint, the single semiconductor
modeling and analysis concern is the future trend of high
power. Accompanied by the adequate protection and derating
requirement, the high power demand could conceivable exceed
the voltage and/or current capabilities of transistors.
Silicon-controlled rectifiers are nresently available with
sinale chin {wafer) at ratinas of 1000V, T10A rms, and Sus
turn-off. They undoubtedly can, with the heln of the nro-
ner nower circuit desian, be utilized to their advantaces
in a areat many future hich nower, hiah freauency ann1ica;
tions. The tnols for the weicht, reliabilitv, nerformance
and cost tradenffs between the PPE's usina these two tvoes
of power switches shall he develoned in Phase B nf the mod-

elina analysis nrooram.



Since such trade-off studies cannot be divorced from nractical
circuit desions and tests, it is recommended that circuit de-
velooment studies be executed separately, vet in close coord-
ination with the Modelinc and Analvsis pbroaram to keen an
effective information flow that will benefit Both nroorams,

The power diodes pTay roles in PPE which are complemen-
tary to and as fundamental as thosé of the transistor or
SCR switches. Involving only one p-n junction, the diodes
will continue to outpace the power switches in their elec-
trical capabilities. Literatures on paralleling diode
operationsfzs] and low forward-drop Schottky diodes[zg]

are beginning to emerge. Continually keeping abreast of
this newly-available information concerning diodes should
be sufficient for the purpose of this analysis and modeling
program.

' Capacitors

Capacitors are important in the analysis and modeling
effort due to their impact on: (1) the output ripple
caused mostly by the equivalent series resistance (ESR)
within the capacitor, (2) the stability of the PPE
control system through the capacitance or the ESR change
with the ambient temperature, and (3) the damping effect
contributed by the ESR. to an LC filter, which may have
unwittingly prevented many detrimental oscillations in
past or existing equipment. These effects will be re-
flected in the future PPE modeling and analysis.

7.5.2 Formulation of a Methodology for PPF Modeling and Ana]ysié

From PPC to an optimum PPE, one must start with the derivation
"of the basic mathematical equations transcribing the operation of
each PPF within the PPE, The derivation identifies: (1)} the PPF
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design constraints in order to meet the given PPE requirements,
and (2) the electrical ratings of all PPC's within the respec-
tive PPF. To illustrate the first identification, a fourth-
order, two L-C stage input filter is used as an example in
Appendix 11.16, in which the filter design is mathematically
described in accordance with a set of given attenuation and
resonant peaking specifications. To illustrate the second
identification, the rms current in the second-stage capacitor,
and therefore the rms current rating required of the capacitor
(in conjunction with'a prescribed derating factor), is deter-

‘mined in Appendix 11.17 for the buck, buck-boost, and-boost dc

to dc converter ¢onfigurations operating with either a constant

on
* Toff'
While design optimization can be obtained for the individual

T, ., a constaht Toff’ a constant EiTon’ or a constant Ts = Ton

PPF, it does not mean much as the design of one PPF is often
closely related to that of another PPF within the same PPE. Con-
sequentiy, an optimum design (in terms of weight, for example) for
one PPF may cause sufficient weight penalty to another PPF so that
the combined PPF does not represent an optimum PPE weight. This
interdependence was numerically demonstrated previously in Appendix
11.14, concerning the existing design and analysis inadequacies.
The mechanism of interlinking these interdependences through mathe-
matical formulation is discussed next.

7.5.3  PPE/PPS Modeling and Analysis - Weight and Ffficiency
Optimization

Two distinct steps must be followed to achieve the goal of
PPE/PPS weiaht/efficiency ontimization. The first sten is the ‘onti-
mization for the PPE; the second step is the optimum confiouration
of the various PPE to form a PPS.

While, for the first step, the PPS designer may hold discre-
tion on whether he wants weight or efficiency optimization insofar
as a particular PPE is concerned, his overriding interest on the PPS
supplying a given spacecraft input power, P, is one in whiéh the



total system weight wPPS

(K +k )L -1)p

W PPE)e - ps es’‘e

pps = W
is a minimum Here, (wPPE) is the total weight of all the PPE
with a net efficiency e, ps and Kes are power densities (kilograms/
watt) associated with power source and energy storage. In other
words, the PPS weight, which includes: {a) the total PPE weight,
and (b) the incremental solar array- and battery weight needed to

supply losses in the PPE, is at its minimum.

Repetitive emphasis has been made on harmonizing all inter-
dependences among various PPF's in order to achieve a PPE optimi-
zation. -The fibers enentually linking these interdependences are
the specified PPE input and output requirements. Since all re-
quirements will ultimately find their way into beihg represented
in the detailed equations governing the desian of the interde-
pendent PPF! s, the interdependences are inherently preserved within
the system of simultaneous equations prescribing all PPF's (within
the same PPE) and subscribing to a given set of input/output re-
quirements and optimization criterion. Once a computer program
can be exécuted to acquire solutions to these equations, the end
results would authentically portray a detailed optimum PPE design,
down to component level, in accordance with the dptimization cri-
terion specified. '

A major effort during Phase I was to identify a computer nroaram
that can solve the nonlinear constrained simultaneous alaebraic equa-
tions with fast convergence. MWorking in conjunction with TRW
Systems' Computer Department, a penalty function algorithm was
jdentified as the engineering tool. Here, each constrained equa-
tion is solved as an unconstrained equation and its error deter-
mined iteratively to converge to the desired solution. Based on
this algorithm, the Sequential Unconstrained Minimization Technique
(SUMT) computer program described previously in Appendix 11.10, was

47



used to solve the nonlinear constrained simultaneous equations,
The program is basically a research tool. Depending on the nature
of the equations, many internal options can be used to speed up

tne rate of convergence.

A discussion on the genera1'categories of solving simultaneous
equations and the penalty-function algorithms is presented in Appen-
dix 11.18.

Due to the highly original nature of: (1) pioneering the PPE
optimization and (2) using a research-oriented computer program,
efforts applied to this endeavor could be characterized as both
arduous and gratifying. The objective of establishing a method-
ology was met by demonstrating successfully , in order of ascending
degree of complexity, the accomplishment of an ontimum-weioht de-
sion for: (1) a toroidal inductor, (2) a sinole-stace LC filter,
and (3) a two-stage LC filter. The last nroblem, the most com-
plicated one, contains fifteen variables. In relation to the
two-stage filter shown in Ficure 3, the fifteen variables are
aiven in Table 2.

Based on a aiven set of inout/output power requirements, a
aiven loss limitation, a given peakina and attenuation specifi-
cation at a fixed switchina frequency, and the weight ner micro-
farad values for both C1 and C2 obtained from known component data,
the computer program calculates all fifteen variables, down to the
details of the inductor desian, in achieving an overall minimum-
weight input filter. | '

A comnlete report on this and other SUMT abplications is given
in Appendix 11.19. The presentation here is rnerely to emphasiie
the potential utility and benefits of this computer proqram for
future PPE/PPS desian.

tthile time and schedule limitatidns of the Phase A nrooram
did not permit the excursion into a more comnlicated problem, e.q.,
a PPE consisting of many interdependent PPF's, it is exnected that
continued work in the Phase B nrogram will ultimatelv lead to
the automated detail desian of future PPE and,to a lesser dearee,
PPS's. Specifically, further effort in Phase B will include:



Figure 3. Two-Stage Filter Used for Demonstration
of Weight Optimization
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Table 2. Two-Stage Input Filter Desian Parameters

Components * *
' L1 L2 R R2 R3 Cl
Variables
Core Cross S { X
Area
Number of X X
Turns
Hire Size X X
Inductance X X
Length of X ‘ X
Core .
Resistances X X X
Capacitances X

*Information in this colurn completely defines the permeability for
both L1 and L2.




(1) the application of a SUMT type proaram to the desian of other PPE confia-
urations {such as a line regulator with an input filter) requiring

more simultaneous equations, (2) the investigation of internal

program option techniques to speed up convergence for accurate solu-

tions, and {3) the implementation and the storage of a component

data bank to facilitate actual physical designs,

Work in this direction was initiated in Phase I, during which
the mathematical equations specifying the operation of all PPF's
within a series switching buck regulator were formulated. These
equations include the following design constraints: (1) losses in
each power-circuit PPC and PPF including magnetics, semiconductors,
and capacitors during normal conduction as well as during switching,
(2) input/output filter characteristics such as attenuation, resonant
peaking, output ripple, and filter-capacitor rms current ratings,
and (3) a filled window and a controlled maximum flux density for
each inductor. The equations are ready for SUMT-processing. A
presentation of these equations is given in Appendix 11.20, in
which the Tinkage of all interdependent PPF's by the PPE input/out-
put requirements, and the selected optimization criterion is vividly
demonstrated.

7.5.4 PPE/PPS Modeling and Analysis - Reliability Enhancement

The accuracy of existing modeling, analysis and prediction of
PPE/PPS reliability rests solely on the assumption that all PPC's
are operated within their ratinas under all circumstances. then this
assumption holds, the conclusion on reliability, based on statisti-
cal failure rates, can enjoy a high level of confidence. When the
assumption fails, however, frequently so does the PPE. In the
later case, existing data concerning reliability becomes meaning-
less, and no amount of elaborate quality assurance or sophisticated
reliability analysis can prevent the inevitable consequences.

The key to reliability enhancement, therefore, is a PPE design
where all its PPC's are controlled to operate within their respective
ratings during all conceivable steady-state.conditions, and in particular,



during transient operations. The emphasis on transient-caused
consequences is manifested by the concern of the PPE designers |
with catastrophic degradation component failures.

As a consequence, the means to achieve reliability enhance-
ment is to implement circuit techniques to Timit, on an instan-
taneous basis, the electrical stresses in all PPC's, thus enSur-
ing safe PPC operations during steady-state and transients. While
this implementation is instrumental in improving the macrbscopic
aspects of PPF reliability, one needs to gain better understanding
of the microscopic aspects of the failure mechanism caused by
either incidental or recurrent transients, from which one can learn.
to design preventively the transient-prone magnetic-semiconductor
switching circuits to mitigate the causes of failures.

Following these two guidelines, the formulation of methodoiogy
in reliability enhancement can. be outlined as the following: (1}
Study of PPE/PPS control philosophy and circuit means to,1imit/¥he
electrical stresses of the PPC's within a PPE under all circum-
stances. (A certain class of PPE, notable for its reliance on the
LC resonance as an integral portion of the power modulation process,
can be excluded from the study due to 1ts_1hherent capability of peak-
stress Timiting.)(z) Modeling'and analysis of the fine microscopic
details related to high-energy transients and pperafing subtleties
generated from the switching of magnetic-semiconductor hybrid cir-
cuits.

For approach (1), the most effective way of controlling the
stresses of PPC's within a PPE is to limit the current in the
switching power magnetics. This not only limits the energy storage
and saturation current of the magnetics, but more importantly, the -
Timitation is propagated throughout the entire power circuit due to
the fact that the MMF in the magnetics cannot change instantaneously.
Since the power magnetics for all PPE are connected in series with
the main power switch during its conduction time, the best approach
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is to turn off the power switch whenever the peak current in it
exceeds a certain predetermined level. The implementation of this
philosophy requires compatible PPE control concept and control
circuitries; the study of these compatibilities will be undertaken
during Phase B. '

For approach (2), some examples of the general areas of in-
terest will include: (a) the peak-energy dissipation and the voltage
spike associated with the power semiconductors during switching

~ transients between conduction and blocking states, {(b) the magnetic-

semiconductor circuit opefafion during sudden line and load changes,
{¢) the distribution of current among the multipie secondary windings
of an inductor following the interruption of its primary current
{e.q., a buck-boost converter with multiple outputs), and (d) the
effect of stray elements and inverter loadings on the starting

and operating characteristics of the self-oscillating types of par-
allel inverters, Unless these phenomena are understood, the effect
of critical design parameters such as leakage inductances and junc:
tion characteristics will remaih intangible, and reliable operation
of the high-power PPE would always be doubtful in terms of safe-
guarding against physical as well as performance failures.

Complete modeling and analysis of these phenomena are by no
means easy; accurate and practical transient models are presently
Jacking for both magnetics and semiconductors.. The lack of effort was
indeed quite inconsistent with our appraisal of the extreme importance
of this particular task - one that will 1ikely provide the most

fundamental contribution to the current state of power processing
technology. It is planned that this extremely difficult task be
conferred with due attention in Phase'B, aiming for the formulation
of methodology on modeling and analysis of the fine details regarding
these transient phenomena.

A succészu]Ifmp1ementatfon of tﬁe‘afo;eﬁehffbned two approaches
allows the entire arsenal of the current statistical reliability anal-
ysis to be used, this time with a new level of confidence fo ascertain
the reliable operation of the PPE and PPS.



7.5.5 PPE/PPS Modeling and Analysis - Performance Evaluation

Performance evaluation concerns the analysis and prediction

with regard to how power and control circuits are working in unison

to achieve a given set of 1nput/dutput requirement specifications.
Discussed previously in Section 7.3.4, two major areas of interest
are: {1) the PPE static and dynamic output response (regulation,
audio-susceptibility, conducted interference, output ripple, out-
put impedance, step line and load transient responses including
fault) and (2) stability. |

To conduct the performance evaluation, analytical methods
used can be classified as the following:

(A). Close-form mathematical analysis using
either a frequency-domain equivalent-

[ 12,30 ]

circuit model or a time-domain

hode1.[25]

- {B) Computer simulation of actual duty-cycle
switching,[22]
(C) Computer calculation based on mathematical

formulation of time-domain equations

For category (A}, various methods avaiiable for this program
and their relative merits and drawbacks were discussed in Appendix
11.9 , and are summarized in Table 13.

Performance evaluation based on fregquency-domain linearized
equivalent—circuit has been reported.[ 12,30 ] The treatment, so
far, has been largely limited to small-signal stability and small-
signal ac perfaormance. One analysis, using the Z-Transform method,
was able to deduct certain transient-performance criterion for a

[21] The use of a continuous equiv-

constant-frequency converter.
alent model, however, prevents the extension of that analysis into
discontinued modes of PPE operation, i.e., the operation during

which the current in the main output filter vanishes for a portion

of the power-switch off time. While it is desirable to possess
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closed-form solutions to all performance characteristics, the
enormous complexities in handling a complete PPE or PPS (with
all the filtering, control and protection functions) generally
render this approach impractical except for certain sim?é?s%T
problems with precisely-defined operating constraints:

For category (B), digital computer programs such as TESS
and CSM/0/P described in Appendix 11.10, are used to simulate
each PPC and/or PPF within the PPE. Complexity is of a lesser
problem so long as the computer capabi]ity is not exceeded.
However, unless a dedicated computer is made available, the com-
puter time can be prohibitively long from the cost viewpoint,
especially when iterations of computer runs are needed to deduct
any qualitative generality. During Phase A, a series-switching
buck regulator with a multiple-loop control circuit was simula-
ted using the TESS program. Appendix 11.21 presents the
circuit model input data and the plots of output data exhibiting
the duty-cycle switching of the regulator. For calculating
five compTete switching cycles of operation, the computer oper-
ating time for the run was more than seven minutes. Conseduent1y,
although good correlation was obtained between the computer mode]
and the breadboard model, the practi6a1 utility of this approach,
for general use, is likely limited by its cost. Consideration
of practical utility also preciudes the use of analog computers.
Since the ultimate objective of all modeling and analysis computer
programs is for the convenient use by all PPE and PPS designers,
the awkwardness of technology transmittal associated with the
analog computer, along with its dynamic range or frequency spread
problems, disqualifies it as a convenient simulation vehicle.



.The greatest primise of obtaining a practical engineering
tool for PPE/PPS modeling and analysis thus rests on the success-
ful impiementation of method category (C). In view of these
limitations and the advantages of a discrete time model over a
‘continuous model in terms of duty-cycle 1imit cycle stability
(See Section 7.3.4), the best analytical tool that can be de-
veloped during Phase II is expected to involve a time-domain
discrete mode]l, for which the time-domain equations will be
derived. Based on these équatibns,.a'FORTRAN computer program
will calculate the various performances in a cost-effective

manner.

7.5.6 PPE/PPS Modeling and Analysis - Cost

The practice of certain common senses for future cost
savings includes the use of proven design concepts, the reduc-
tion of parts count, and the early establishment of firm
requirements to minimize the PPE specification changes. Othen
than these common assertioﬁs, which may not always be app}ica;
ble for various technical reasons, not much concrete method-
ology can be declared about cost optimization.
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‘For those dealing with the PPE/PPS design, development, and
production, it is abundantly clear that there exists very definite
tradeoff possibilities among cost, weight (and efficiency), relia-
bility, and performances. Somewhere someone knowledgeable, pref-
erably the PPS designer, would have to weigh the various compromises
between what can be done in terms of weight, reliability, and per-
formance, and what is advantageous from the PPS cost perspective to
actually acquire. These compromises, once defined, must be ade-
quately reflected in the specif{ed PPE/PPS Eequirements to effect
cost savings. The PPE/PPS modeling and analysis program, while
technical in both its temperament and its content, should never
lose sight of the role it is capable of making in cost reduction by
intelligently defining the PPC/PPE/PPS requirement specifications.,
This is becoming particularly imperative in view of other emerging,
fund-competing programs such as mass transportation, pollution
control, and other high-priority civil systems.

A successful modeling and analysis program on weight, relia-
bility and-performance is, by itself, the most direct contribution
toward PPE/PPS cost reduction. .Once the needs are diminished for:
(1) time-consuming preliminary tradeoff study, (2) wasteful itera-
tions in design ‘and development to meet requirement specifications,
and (3) frequent maintenance due to inadequate design, a methodology
for cost optimization would be much easier to formulate. [t is for
this reason that the modeling and analysis of PPE/PPS cost is sched-
uled as the last milestone foi the Phase B program.

7.5.7 Added Complexity of PPS Modeling and Optimization In
Addition to Those of PPE

The fundamental purpose of the power processing system (PP§)
aboard a spacecraft is to provide the electrical compatibility be-
tween energy sources and various loads. To fulfill this role within
the spacecraft optimum criterion, the PPS configuration would have
to consist of an optimum combination of PPE. While the identifica-
tion of interdependencies among various PPE functional blocks is
a key procedure in optimizing a PPE, likewise the interdependencies



among various PPE comprising the PPS is instrumental to realiZing
an optimum PPS. The interdependencies amont PPE are likely orien-
ted toward the different requirements imposed on the PPE as a re-
sult of different PPE combinations, for these requirements invaria-
bly find their way to effect the detail design of each individual
PPE functional block.

Therefore, for a given PPS configuration, the different in-
volvements between PPS and PPE modeling and optimization include
at least the following: (1) the added complexity of a PPS com-
prising a multiple PPE, and (2) the identification of each PPE's
requirements as a function of the PPS COnfiguration. However,
the basic modeling and optimization techniques developed for the
PPE are also * applicable to the PPS.

57



58

8. PHASE B PROGRAM PLAN

8.1 [INTRODUCTION

The program Phase I effort is brought to a productive con-
clusion - the preparation of the Phase B Program Plan. In-:
laying out an integrated, coherent program to bring all aspects
of the proposed methodology to a useful form, it is important to
define first the specific program goails. _Theée goals have been
reflected throughout the preyious sections of‘this report and are
summarized in Section8°,2,

Due to the complex nature of the program, certain basic phil-
osophy must be adopted to guide the long-range Phase B program,
The discussion is given in Section §.3.

Guided by the philosophy outlined, the basic Phase B program
tasks and their schedule plans are presented in Section 8.4.

8.2 PHASE II PROGRAM GOALS

The general objective of the Phase B program is to implement
the PPE/PPS modeling and analysis methodology formulated in Phase A,
so that the results of Phase B' can be useful in developing future
PPS's for the shuttle, the sortie laboratory, the earth orbiting
spacecraft, the planetary spacecraft (electric propulsion), and
the military aircraft. |

The program will be useful to future PPS's in the following
primary areas:

(1} Optimum PPS Weight

(2) Enhanced PPS Reliability

(3) Predictable and Improved PPS Performance
(4) Minimum PPS Cost '

Specific goals for each area are described next.



Optimum PPS Weight

At the conclusion of the Phase B program, accurate PPE/PPS
analytical models will have been computer programmed to eliminate
laborious iterations during PPE/PPS weight optimization tradeoff
studies. The program will also include the following features:

] Automated optimum magnetics design.

. The establishment of a power processing
component data bank (including power
source characteristics),

. The capability of determining the impact
on PPE/PPS weight exerted by different
duty-cycle control methods.,

] Accurate assessment of the weight impact .
of PPE mechanical packaging.

. The elimination of any overspecified PPE
A requirements to minimize the weight penalty.

Enhanced PPS Reliability

The brogram goal here is not to improve on the present statis-
tical approach to the reliability evaluation, but rather to enhance
the validity on which the statistical analysis is based, Specifi-
cally, the following accomplishments are anticipated from Phase B

. Macroscopically, the reliability will be enhanced by the
recommendation of standardized peak-current limiter and
active switching transient energy recovery netwqué‘to
control the peak energy dissipation during any transient
operation.

* Microscopically, magnetic-semiconductor hybrid circuit
recurrent or incidental switching transient phenomena
will be better understood with regard to the effect of
stray parameters (leakage inductance, junction charac-
teristics, 2tc.) on the peak energy dissipation and
switching voltage spike associated with the semiconductors.
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Predictable and Improved PPS Performance

The Phase® B program, concerning PPS performance, is expec-
ted to maintain a proper balance between qualitative understanding
and quantitative analysis. The specific goals are the following:

. The evaluation of all available analytical tools
from which the one most suitable for switching-
regulator analysis will be identified.

® The most capable control-circuit concept (single-
loop, mu1t1b1e loop, the method of sensing the
types of duty-cycle control, and the method of
analog éigna1 to discrete time interval conver-
sion) will be identified in terms of their re-
spective ability to achieve high performance in
stability, line/load step transient response,
audio-susceptibility, and output impedance.

. The design criteria for performance character-
istics other than those intimately related to
the control circuit, such as the output ripple,‘
the oscillator starting, etc., will be established.

[ The cémputer program used for performahce calcula-
tion will be cost-effective in terms of the data-
processing time needed.

. Although subject ta further sthdy, our present
appraisal identifies the time-domain discrete model
as the most accurate and general in switching-regu-
lator analysis.

Minimum PPS Cost

* The Phase B program on weight, reliability, and
" performance will provide the PPS designer with more

insight and better judgment on the decision-making

with regard to the definite tradeoff possibilities

among cost, weight, reliability, and performance.



. Furthermore, cost-reduction is possible at the
concTusidn'of Phase B due to the elimination of:
(1) time—cdnsuming iterative tradeoff studies,
(2) wasteful design, deve]opmgﬁt dnd‘dna1ytica1‘
effort. . | ‘

8.3 PHASE B PROGRAM PHILOSOPHY

Like any systematic study,‘certa{n basic philosophy must be
adopted to guide the sequential activities. These guidelines are
established as the following: '

(1) Long Range Program

The enofmdus contents within the scope of PPE/PPS modeTing
and analysis, the conjunction with the origin§1 nature of
most of the tasks to be proposed, would dictate a long-
range multi-year program'fqr Phase B  Current appraisa1’
suggests a six-year program for Phase B;' '

{(2) Tasks of Progressive'domplexitx

The 1ong-range program should be based on a solid foundation.
To minimize the Phase B program cost, the technical effort
must be planned so that tasks of higher complexity can util-
ize the modeling and analysis techniques developed during
prior, .simpler tasks. Practice of this philosophy includes
the foliowing ana1ytica1 sequences:

) From single-loop control system to multiple-loop
control,

) From buck switching regulator to other more com-
plicated types.

. From dc system to ac system.
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(3) PPE Fundamental to PPS

While the PPS modeling and analysis is the ultimate
objective, it‘cannot.be,performed'without a thorough
modeling and ané]yéié'onrthe various types of PPE
constituting the PPS Cdnfigurations. The fundamental
importance of PPE study should be reflected in the
cost and schedule of the Phase B program.

(4) Explicitness to Intangibility

Modeling and anéIysis tasks that are capable of being
fully formulated by clear expressions will be under-
taken first. Consequently, of the four primary areas
of program concern listed in Section 8.2, the order of
analytical progress will be weight and performance,
reliability, and cost.



8.4 PHASE B PROGRAM PLAN

Complete Phase B modeling and analysis efforts are illus-
trated in Figure 4. The six-year program contains two basic
categories: ‘ '

{1) Power processing equipment
(2) Power processing system

Since various PPE serve as building blocks for all PPS config-
urations, a successful PPE modeling and analysis is fundamental
to accomplishing the ultimate program objective concerning the
PPS's. Consequently, the PPE modeling and analysis will account
for a major portion of fhe Phase B = program effort, and will be
conducted prior to the initiation of most PPS activities.

Weight, performance, reliability, and cost are the common
primary concerns for both PPE and PPS. In the following subsec-
tions, the structural framework of each of the four aforementioned
concerns will be presented. Supplemented by the previous discus-
sions given in Section 7, the objective and the overall implemen-
tation involvement for all subtask blocks shown in Figure 4,
should become evident.

8.4.1 Power Proceesing Equipment Reliability

Statistical approaches current]y'used for PPE failure rate
analysis will be retained. Major improvements, however, will be
concentrated on the positive control of electrical stresses on
all power processing componénts under transient operations to
enhance the validity of the statistical approach. Only through
this assurance can the PPE reliability approaches as exhibited
by the aggregation of the PPC's within the PPE.

Incidental trahsient stress control will be studied through
the phitosophy and the functional compatibility of various active
means of peak current limiting in the power switch. Recurrent
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switching transient stress control will be gained by first
securing a better understanding of the magnetic~-semiconductor
hybrid swifching circuits. High frequency magnetics and semi-
conductor models are necessary; from which various tasks listed
in the second column of Figure 4~ will be consummated at the
end of the fourth year of Phase B. '

Computer simulation (i.e., programs such as TESS) will be
extensively used as a modeling and ana1ysis tool. The end re-
suylt is the generation of a set of guidelines prescribing the
design of high-power magnétfc-semiconductor converters and in-
verters, with emphasis on the peak-energy dissipation and switch-
voltage spikes associated with these equipment. When necessary, '
the design guidelines will include the modeling and analysis of
certain passive and active energy suppression networks.

§.4.2 Power Processing Equipment Performance

With the PPE performance characteristics intimately related
to the PPE control circuit, performance analysis naturally will
start with the control circuit and its analysis, which includes
both single and multiple-loop control. Time-domain discrete
models are expected to be the leading method of attack, based on
which the limit-cycle stability for ail regulated PPE will be
analytically determined.

Other performance characteristics, such as audio-susceptibil-
ity, output impedance and step transient responses, will be cal-
culated by a computer program based on discrete time-domain equa-
tions. By virtue of the fact that the computer is asked, in this
case, only to perform numerical calculation rather than to similate
the actual act of duty-cycle switching operation, the cost for
executing such a computer program will be significantly lower than
simulation, thus making it a practical tool for future PPE'designers.
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Other chacteristics of importance include output ripple,
harmonic contents (in dc to sinusoidal ac inverters) and output
regulation. The output ripple will be a design constraint for
the weight analysis to be discussed later. Analysis of harmonic
content will be part of the year-4 effort, and is expected to
reveal the superiority of the constant carrier frequency pulse-
width modulation as the premium harmonic-reduction technique.[zz]
Analysis of output regulation is in a class by itself, as none of
the ac performance analysis technique is applicable here.

8.4.3 Power Processing Equipment Weight/Efficiency

Due to the potentially high degree of explicitness one can
obtain in formulating the PPE weight/efficiency, this task is
particularly suitable for a computer design optimization. " Neces-
sary ingredients for such a program include a set of well-conceived
guidelines in optimum magnetics design, an electronic component data
bank, and the formulation of power circuit design equations based
on the PPE input/output requirement specifications. These design
équations should also reflect the PPE packaging impact, for which
an accurate model is needed.

A1l these ingredients, appearing in eguation constraints, are
to be integrated into a computer program, which solves their simul-

~ taneous solutions. Such a program, the Sequential Unconstrained

Minimization Technique (SUMT), has been identified during Phase A.
The solutions not only represent a minimum-weight PPE, they also
provide the detailed PPE design down to the component level.

In view of the present inadequacy in conducting PPE weight
tradeoff studies for a given set of input/output requirements, the
utility of the modeling and analysis results obtained from this
program cannot be underestimated.



8.4.4 Power Processing Equipment Cost

Present cost analysis focuses heavily on a set of empirical
rules based on dollars per part. The basic rule is not expected
to change for the cost analysis during year-5 of Phase B, pri-
marily because the cost of PPE mechanical packaging will remain
parts-count sensitive. However, successful completion in PPE
reliability, performance, and weight analysis will significantly
reduce the risk of overrun in terms of the future PPE design,
development, and analysis'cost.' Thus; although in all likelihood,
the parts count wil still be the basis used to perform future
cost analyses, the cost prediction, based on the Phase B program
results, should be more reliable than its present counterpart.

8.4.5 Power Processing System Weight, Performance, Reliability,
and Cost '

Basic modeling, analysis, and optimization techniques developed
for PPE are also applicable to the PPS. However, a PPS can be
comprised of many different combinations of PPE, with each combina-
tion'forming a unique PPS configuration. Furthermore, different
input/output requirements exist for each component PPE within the
respective PPS configurationsf

For the PPE modeling and analysis techniques to be useful to
PPS, one must first identify'a11 candidate PPS configurations and
the corresponding requirements for each PPE within a given PPS
configurafion. This need is reflected in Figdre 8.1, prior to the
PPS weight, performance; reliability, and cost (WPRC)} analysis.
Once this need is fulfilled, the WPRC analysis for each PPE within
each PPS configuration can be carried out, based on techniques
already developed for PPE, and the WPRC of a given PPS coﬁfigura-
tion is simply the mathematical WPRC aggregation of all PPE
within that PPS. Repetitive determination of the respective WPRC
for all candidate PPS configurations ultimately provide the PPS
designer with all the characteristics relevant to his PPS tradeoff
study, from which he can select, unfalteringly and without presump-
tion, the optimum PPS configuration.
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9, DETAILED PLAN FOR YEAR 1

9.1 INTRODUCTION

With the 6-year Phase B program being planned for develop-
ing techniques to provide a lasting utility in power processing
equipment and system (PPE and PPS) modeling and analysis, the
specific tasks planned for year-1 of the long-range program will
be oriented toward establishing a solid foundation for the overall
program. However, the first year plans of the Phase B program
have been formulated so as to provide immediate, tangible and
beneficial results at the end of the first year.

Since PPE is the basic constituent of a PPS, by necessity,
the first-year work will be mostly confined to the PPE level.
Furthermore, no aspect involving cost will be pursued during
year-1, for a good understanding on the weight, reliability,
and performance aspects is essential to a non-superficial cost
analysis.

9.2 BASIC TASK CATEGORIES FOR YEAR-1,

Basic task categories for year-1 are presented in Figure 9.1,
first row. They are discussed briefly as the following.

9.2.1 PPE Reliability

The first year work on PPE reliability is aimed to enhance
the validity of the current method of statistical failure rate
analysis. As elaborated previously in Section 6, the failure
rate analysis is valid only if the electrical stresses on all
PPC's within the magnetic-semiconductor PPE are positively con-
trolled. While stress control during steady-state operation is
generally well attended to through nominal design effort, stress
control during electrical transients has been frequently an ig-
nored art. These transients can be classified into two types:
(1) incidental, and (2) recurrent.

Study of Active Means of Stress Control

Incidental transients include conditions such as step line
and load changes, with equipment starting and lead short-circuit
or arcing as special cases. Electrical stresses on most PPC's



aré related to the current build-up in the main filter inductor;
active means of stress control must be devised to provide the peak
inductor current 1imiting during these transients. Part of the
year-1 reliability enhancement effort will be the study of the
nature and the control of the iﬁstantaneous current Tevel in the
inductor, using a series switching buck regu1étor as an example.
In the subsequent years, the study effort will be extended to
other PPE types. |

Analysis of Recurrent Transients In Mangetic-Semiconductor
Switching '

Recurrent transients occur in each cycle of the PPE normal
switching function. Manifestations of these transients are gener-
ally found in the peak-energy dissipation and the switching voltage
spike associated with a semiconductor, although they are in-reality
also subtlely causing other phenomena such as undesirable limit-cycle

oscillation and, as a special case, failure to sustain oscillation,
Analyses of thése transients are, admittedly, difficult indeed.
However, the critical importance of these transients to a reliable
PPEAoperation, particularly in,view'of the future high-power re-
quirement, provides a compelling impteus of 1nc1udihg these analyses

in the modeling and analysis program.- The analytical effort will be
initiated by the generation of porper high-frequency equivalent
circuits for both the magnetics and semiconductors. Computer simu-
lation programs such as TESS will be utilized as a tool to aid the
study. A basic two-winding buck-boost power configuration will be used
during year-1 to incorporate the equivalent circuits. The reasons are:

) It contains both magnetics and semiconductors,

] The two-winding inductor allows the modeling
and analysis of the effects of leakage induc-
tance and winding capacitances,

. The study will provide insight into the more
complicated operation of an inverter using a
rectangular-loop core when it saturates during
each cycle (or each half-cycle if the core is
operated in the minor loop) of normal operation.
Actual comp1etidn of the buck-boost converter switching transient

study is expected at year-2.

69



70

9,2.2 PFE Performance

The first-year work on PPE performance is aimed to establish
the basic analytical models and tools that will enable the future
development of a complete, accurate and cost-effective PPE per-
formance analysis and simulation computer program. While the
evaluation of performance characteristics such as 5tabi1ity, audio~
susceptibility, output impedance and step transient responses will
command the primary attention here, other characteristics such as
reguiation accuracy and harmonic contents are not to be overlooked.
Specific outputs expected from the year-1 PPE performance analysis
are discussed in the following categories:

Evaluation of Control Techniques

Although control techniques include the classical sing]e-lobp
control and the more recent multiple-loop control, the objective
of establishing the most applicable analytical tools will be bet-
ter served if the first year work starts with the single-loop.
Since a control approach cannot be evaluated without its comple-
mentary power circuit, a series switching buck regulator will be
used for this purpose. |

Mathematical Modeling

Analytical effort can be based on time-domain discrete model,
frequency-domain continuous linearization model, computer analysis/
simulation, and any combination of these methods. While these
approaches will be further reviewed to determine their respective
utility to the analysis and modeling program, our current appraisal
prefers the adoption of the time-domain discrete model. At the
end of year-1, discrete time-domain model of a single-loop con-
trolled series-switching buck regulator will have been established,
and a1l time-domain equations formulated.



Duty Cycle Stability

Operating duty-cycle stability analysis is fundamental to
the analysis of all other.contrd1 performances. In the fregquency-
domain model, stability ané1ysis is generally based on Nyquist
criterion and/or Bode plot, In the discrete time-domain model,
stability of the steady-state solution can be assessed more“rig-
orously by examining the eigen-values associated with a state
matrix describing the steady-state equilibrium solution. This
method of attack, as applied to a switching buck regulator for
initial illustration, will receive ample attentibn during the
first year, the lack of its previous applicaiton in power proé-
essing éna1ysis notwithstanding. At the end of year-1, the
completion of a duty-cycle stability analysis using the time-
domain approach is expected. '

Cost-Effective Comhuter Program for Performance
- Analysis and Simulation -

In view of the complexity to be encountered in.analyzing a
power processing system (currently scheduled for year-4, see
Figure 8.1), it is essential that such PPS performance charac-
teristics as (1) the output response to.step or sinusoidal line/
load changes and (2) system output fault propagation, can be
processed numerically and with extreme cost-effectiveness (i.e.,
does not require long gomputation time). Both performance anal-
ysis, based on mathematical modeling, and performance simulation,
based on actual implementation of the duty-cycle switching mech-
anism, are possible, and the task of the first year is to iden-
tify and develop the numerical approach that is both accu?ate
and cost-effective. The series switching buck regulator used
in the stability ana1ysi§ will also be the illustration vehicle
for the computer performance analysis/simulation.
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¥.2.3 PPE Weight/Efficiency

The first year's work on PPE weight/efficiency is aimed to
initiate the necessary mathematical as well as design implemen-
tation, which will culminate in an inclusive computer program for
weight/efficiency design optimization, thus eliminating the
presently-arduous equipment or system tradeoff study and achieving
simultaneously accuracy and cost-effectiveness. To gain such a
goal encompasses three basic tasks: (1) the assembly of a computer
data bank for the power processing compoﬁent {PPC), the formulation
of design equations, and (3) the establishment of a compatible
computer technique.

Component Data Bank for Computer Storage

While the data bank eventually would include all electronic
components, only the magnetics component will reveive the first-
year attention. In particular, the core-loss and copper-10ss
data associated with high power, high frequency magnetics under
asymmetrical squarewave excitation are presently lacking; they
will be identified through experimental/analytical investigations
to facilitate an optimum design for the output filter inductor
of the aforementioned series-switching buck regulator. At the
present time; it suffices to point out that the Tack of pﬁBTTsﬁed
information concerning magnetics Tosses has been a fraQi]e link
blocking a comprehensive optimum magnetics design; such a design
is instrumental in achieving'an optimum PPE weight or efficiency.

Formulation of Design Equations

As described in Section 6, design equations for all power
processing functions within the given PPE must be formulated to
facilitate an optimum-weight PPE design. In year 1, these equations
will be formulated for the previously-menticoned series switching
buck-regulator power circuit. Emphasis will be placed on the der-
ivation, in closed mathematical form, the weight/loss associated
with each PPC, and the constraints relating the design parameters
to the various PPE specifications. Furthermore, the use of the



specifications and the optimization criteria (either weight or
efficiency) as the fibers linking the interdependences among
the various PPF's will also be demonstrated.

Establish Computer Program for Weight/Efficiency Optimization

~ The computer program to be established in year-1 will be
capable of solving the simultaneous equations formulated, for
the series switching buck regulator, thus providing the detail
design of its power circuit down to the component level. Since a
detailed data bank is not yet available in year-1, certain numerical
values required as computer inputs, such as the capacitor weight
for a given capacitance with a predetermined voltage rating, will
be assessed on the basis of design experience. This practice is

deemed acceptable in view of the fact that the first-year objective .

is to establish the basic computer technique rather than to accom-
plish a fully automated design.

9.2.4 Power Processing System Tradeoff Methodology

Having performed all the year-1 tasks listed previously con-
cerning a PPE, work will be initiated to engage a study on the sys-
tem tradeoff analysis méthodo]ogy. The major objective here is
the 1nveéfigation on how the basic information gained from the
year-1 PPE analysis can be most effectively utilized, in an or-
ganizedland orderly fashion, to achieve an optimdm PPS design. To
serve this purpose, a simple fictitious PPS containing a solar
array, a storage battery, and a series-switching buck reguiator,
will be used as an illustration to achieve a minimum system weight.
In other words, the sum of the switching regulator weight and the
incremental solar-array and storage-battery weight needed to supply
Tosses in the switching regulator, will be minimized.
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9.3 STATEMENT OF WORK

9.3.1 Objectives

The objective of the first-year work outlined herein is
to provide a solid foundation for the long-range modeling and
analysis program. The foundation is pertinent to the achievement
of the following ultimate program. goals:

(1) To enhance the validity of the present statis-
tical approach of the failure rate analysis
through analytical study of component stress
control during incidental and recurrent tran-
sient qperations.

(2) To develop the basic analytical model for power
processing equipment performance evaluations
and to establish a cost-effective computer pro-
" qram for performance aralysis and simulation,
using a series-switch buck regulator as an
example. o

(3) To establish the basic computer technique for:
(a) power processing equipment weight/efficiency
optimization, using the series switching buck
regulator as an example, and (b) power proces-
sing component data bank storage. The_component
study includes tﬁe~camputer routine for the apt1q
mum design of minimum weight inductors.

(4) To establish, through a practical example, the
basic power processing system analysis method-
ology in preparation of future tradeoff studies
of more compiicated systems.



9.3.2 Specific Tasks

The contractor shall provide the necessary personnel,
materials, and facilities to perform the work described in the
following tasks:

TASK 1.  Power Processing Equipment Design; Analysis,
and Weight {or Efficiency) Optimization

Design equations shall be generated. for a series-
switching buck regulator with an input rating of

60V and 300W maximum, which shall 1nc10de input

and output filtering, power stage modulation, in-
version, rectification, and the effects of the
different duty-cycle control on the design of

these power processing functions. '

The desTgn equations sfiall Be solved by appropriate
computer techniques to establish the design parameters
of all components as related to the requirements spec-
ifications of the buck regulator, the optimization
criterion (weight and efficiency)} and

the significant interaction with the feedback
.control system. The solutions shall include the
determination of the optimum 5w1tcﬁing frequency
for the buck regulator, ‘The solutions.shall also
include the detailed design parameters of the
power inductor such as the dimension of core,
winding turns and wire size, and the permeability.

Initial effort leading to the ultimate establish-
ment of a component data bank shall include an -
experimental/analytical study of losses in high
frequency; high power magnetics under asymmetrical
squarewave excitation.. The study results shall be
used in the weight optimization for the aforemen-
tioned series switching buck regulator.



TASK 2. Power Processing Equipment Performance Analysis and
Simulation

A single-loop feedback shall be used for initial inves-
‘tigation purposes to control the series-switching buck
regulator identified in Task 1. Different duty-cycle
control such as constant frequency, constant on-time,
constant off-time, constant ripple, constant volt-sec-
onds, etc.,shall be reviewed as applicable to the series
switching buck regulator. |

Mathematical models of the series switching buck reg-
ulator using the single-loop controlshall be generated.
Both frequency—domain and time-domain analytical approa-
ches shall be considered in generating the mathematical
model Since the emphasis of the later approach -is
toward the switching frequency, it shall receive special
attention in the operating duty-cycle stability analysis.

Subsequent to the identifiéation of the analytical
models, stability analyses 'shall be performed

with the objective of deriving sufficient qualitative
generality. Based on the same models, other performance
charécteristics such as step transient response, audio-
susceptibility, output impedance, static regulation and
fault operation, shall be evaluated. |

A computer simulation program shall be established to aid
the performance evaluation. The program shall be cost-

effective to run, and shall not rely on the availability
of a dedicated computer.

TASK 3. Power Processing Equipment Reliability Enhancement

The validity of the current failure rate statistical
analysis shall be enhanced through: (1) study of the
methodology to provide the power processing component
stress control during incidental transients such as



regulator starting and sudden output short, and
(2) establishment of high-frequency equivalent
circuits for the magnetics and the semiconductors
to facilitate a comprehensive analysis of the
magnetics-semiconductor hybrid circuit switching
phenoména,_thus providing the basic understanding
for controlling the component stress during re-
current switching transients, A basic buck-boost
power circuit configuratibn shall be utilized to
fulfill the analytical purpose.

TASK 4, Power Processing System Tradeoff Analysis Methodology

The pbwer processing equipment modeling and analysis
approaches and results associated with the first
three previous tasks shall be collectively examined
and integrated into a methodology; the methodology

" thus conceived shall be aimed at an orderly and
cost-effective plan tb utilize the basic power
processing equipment study results for the benefit
of the power processing system tradeoff analysis.
The utility of the methodology shall be demonstra-

ted through the weight optimization of a basic power
processing system configuration containing a solar
array, a storage battery, and a series;switching
buck regulator. ‘ |

9.2.5 Review and Reporting

The contractor shall prepare a presentation at NASA Lewis
after the first half of the program, covering results of Tasks
1 through 3 obtained up to that time period.

The contractor shall prepare a final presentation which de-
scribes the results of Tasks 1 through 4. A formal, oral presen-
tation of results shall be made at Lewis Research Center. A
review draft of the final reportsfiall be submitted to the project
manager no later than ten (10) days following this presentation.
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In addition:

A-

Technical, financial and schedular reporting
shall be in accordance with the Reports of
Work (with 533M) attachment.

The contractor shall report data in the "Planned"
cost columns 7b and 7d of the NASA Form 533M.
This planned cost data shall be taken from the
latest plan as approved in the Work Plan, inclu-
ding approved revisions hereto. Column 8b of
NASA Form 533M shall contain estimates of costs
and manhours for the second subsequent month.

The monthly report submission data shall be no
more than ten (10) operating days after the clios-
ing data of the contractor's accounting month.

The number of copies to be submitted for each
monthly report is as follows:

7. A maximum of 15 copies of the Monthly Technical

Progress Narrative.

2. A maximum of 5 copies of the Contractor Finan-
cial Management Report (NASA Form 533M).

3. A maximum of five (5) copies of the Financial
Management Performance Analysis Report (NASA
Form 533P). .

The reporting categories to be reported in NASA
Form 533M with the.contractor's monthly reports
are as follows:

Tasks 1 through 4 direct hours and doliars.
Total contract direct hours and dollars.
Total contract overhead.

Total cost,

Fee.

Total contract.

S o0 oW



9.4 PROGRAM SCHEDULE

A sample program schedule to perform the tasks of the
statement of work is shown in Figure 5.

Tasks 1 and 2 are scheduled to overlap to allow a con-
stant information flow between the two tasks. Thus, the
effects of control performance on the power circuit design
are timely integrated.

- Tasks 3 and 4 are carried forward and amplified on in
the subsequent year{s) of the program concerning the analysis
of the switching phenomena and the sample PPS analysis.

Progress briefing, final briefing, and final report are
indicated as milestones in Task 5.

9.5 RECOMMENDED LEVEL OF EFFORT

Each task contained‘in the statement of work has been
estimated with régard to the required manpower and computer
time for the fulfillment of the respective technical goal.

In accordance with the program schedule shown in Fig-
ure 5, Table 3,1ists the recommended hours for the engineering
effort and remote computer terminal operating time.
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FIGURE 5 Modeling and Analysis Program Schedule Year 1

MONTHS
TASKS

Task 1 - POLUER PROCESSING
ENUTPPENT DESIGN, ANALYSIS
AND WEIGHT {OR EFFICIEMCY)
OPTIMIZATION

(a) Formulation of Desian
Equations

{b) Establish Computer
Program for Desian
Optimization

{c) Establish Component
Nata Bank

Task 2 - POMER PRACESSING
ENUIPHENT PEPFNRMANCE
ANALYSIS AMD SIMULATINH

{a) fvaluation of Control ’
Techniques

(k) MWathematical Modeling.

(c) Duty-Cycle Stability
Analysis

{d) Cost Effective Com-
puter Performance Anal
ysis and Simulation

Task 3 - POMER PROCESSING
EQUIPMENT RELIABILITY
EXHANCEMENT

(a) Methodology of In-
cidental Transient
Electrical Stress
Control

(b} Analysis of Recurrent
Transients

Task 4 - POHER PROCESSTNR |
SYSTEN TRADEOFF AKALYSIS ‘
NETHODOLDGY |

(al Tradeoff Methodology

(b) Sample Computer Cal-
culation Progress Fimal  Final

Brigfing Erislfi
Task 5 REVIEW AND REPORTING Y rigffino Report
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TABLE 3

RECOMMENDED LEVEL OF FEFFORT FOR TIIE YEAR-1 PROGRAM

TASK

ENGINEERING MANHOURS

CNMPUTER HOURS

{Pemote Terminal)

1 - Power Processing Equip-
ment Desiaon Analysis and
Meicht Optimization

2 - Pover Processino Equip-
ment Performance Analysis
and Simulation

3 - Power Processing Fquip-
ment Reliability Enhancement

4 - Power Processins System
Tradeoff Analysis Method-
oloay

2150

2250

1150

500

250

200

70

50
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10. CONCLUSION

To anyone'workfng with nondissipatively regulated converters,
inverters, and systems comprised of these equipment, certain
design and analysis intricacies inevitably make themselves felt
throughout the equipment and system design and development stage.
Empirical and intuitive reliances often intercede with the de-
signer's desire to be "more scientific" and his commitment of
being "on schedule." Handicapped by a general lack of established
design, modeling, analysis, and optimization tools, it has not
been unusual for a power processing designer to face the perplex-
ing situation of emerging from the intercession practically
empty-handed,

Generally speaking, the plight that most equipment and system
designers find themselves in has to do with at least one of the
following power processing characteristics: weight/efficiency,
performance, reliability, and cost. While power processing as a
technology has reached the level of sophistication where the
modeling, analysis, and optimization of these characteristics
should have been well established, a survey of existing documents
and literature ﬁas proven the contrary,

The primary content of this report focuses the attention on
the formulation of a modeling and analysis methodology for power
processing components, equipment and systems. Five diversified
power processing systems including those of shuttle, sortie lab-
oratory, earth orbit spacecraft, planetary spacecraft, and mili-
tary aircraft are selected from the space flight programs within
the next two decades. These systems will be the specific bene-
ficiaries as a result of the methodology implementation, although
the potential beneficiaries will definitely transcend the chosen
five,

A six-year program planyas conceived to implement the method-
ology formulated. Since the system modeling and analysis cannot be



performed without a thorough understanding on the various types
of equipment constituting the system configuration, a majority of
the initial program effort is centered on the equipment level,
with the system aspects phasing in gradually as the equipment
modeling and analysis techﬁiques consolidate.

When successfully executed, the six-year program is expec-
ted to provide the following flexible design and analysis tools
and benefits: '

. The power processing equipment and systems which
can achieve optimum weight/efficiency through
the use of optimization computer programs based
on: (1) detailed design equations to satisfy a
given specification, and (2) accurate power
processing component data stored in a computer-
jzed data bank. Such an optimization program
would, upon its perfection, relieve the present
need for the time-consuming and marginally-accur-
ate system tradeoff studies.

. The pawer processing equipment and system steady-
"state and transient performances can be calculated
and simulated by cost-effective computer programs.
Such programs can be extremely useful, for they-
allow the assessment of the power processing system
performances prior to the system development and
integration. '

] The current method of power processing system sta-
tistical failure rate analysis will not be altered
as a result of the six-year program. However, the
program outlines a methodology to study and anal-
yze all incidental and recurrent transients within
a power processing equipment, with the objective
of understanding and controlling the various
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transient and switchiing phenomena so that no power
processing component will operate beyond its rating
under any condition. Consequently, while the failure
rate analysis remains statistical in nature and
identical to today's methods, the level of confidence
concerning the re]iabi]ity assessment at the end of
the long-range pfogram.w111 be at a higher level

than its present counterpart.

[ Accurate and successful weight optimization, perfbr-
mance prediction,'and reliability assessment, are
cost~saving measures themselves. However, another
potentia1 outgrouwth from these achievements is
that they may provide a system designer with certain
real and solid bases for the conduction of a cost
tradeoff analysis between two diversified philosophies
concerning reliability enhancement, namely, whether

~to implement component and equipment redundancy, or
whether to call for modularization. The methodology
of engaging this tradeoff is, admittedly, not all
clear at this time. However, it should become more
apparent as the six-year program advances,

Power processing technology has, by necessity, been rapidly
evolving, It is perhaps not an understatement that, in terms of
modeling and analysis of the power processing equipment and sys-
tems, the level of sophistication has been much below that of
equipment/system circuit developments. The industry, however,
has reached the maturity that such a gap can no longer be toler-

ated without incurring severe penalties in the equipment and sys-
tem weight/efficiency performance, reliability, and cost. It is

thus to the advancement of the.power processing equipment/system
analysis and simulation along with its ultimate fertility to the
so0il of equipment/system design and development, that this anal-
ysis and modeling program is dedicated.
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11,1 - SURVEY OF FUTURE NASA AND MILITARY SPACE FLIGHT PROGRAMS

11.1.1 NASA Space Transﬁoftation System

Extensive studies have been performed at NASA to determine
‘their future programs and goals in order to satisfy their tech-
nical objectives consistent with the_financiaI aT]ocatiohs.

Figure 6 illustrates the NA§A Space Flight programs for the
1975 to 1990 period as related to the NASA Space Transportation
System. The primary transportation system for NASA will be the
Space Shuttle progkam, supplemented by aircraft and dedicated
rocket launch satellites. The shuttle payload can be NASA pro-
grams, mi11tary,brograms; or even Eufopean or Japanese programs,
These programs can be divided into four basic categories.

The first category includes earth orbit satellites which can
be set in orbit and retrieved by the space shuttle itself. These
include earth observation satellites, special experiment satellites,
communication satellites, or anything in a fifty to one hundred
and fifty mile orbit above the earth.

The second category is the returnable tug and its satellite
payload. Because of the higher energy to transfer to the synchron-
ous orbit, space shut£1e cannot be used for that application. The
unmanned tug will be launched from the payload area with its satel-
1ite load and will place the satellite in the synchronous orbit.
The tug can either place the satellite in orbit or return it to
the shuttle for transfer back to earth. This allows a combination
of the shuttle, the'tug, and a recoverable satellite.

The third category is the non-returnable tug, generally being
planned for the interplanetary satellite which must escape the
gravitational field of the earth. The non-returnable tug can also
be used for placing extremely 1arge synchronous satellites in orbit
where the tug does not have the propulsion capability to return to
the near-earth orbit for return to earth.
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The fourth category is the short-term space experiments that
can last a period of seven to fourteen days. These experiments can
be either manned or unmanned, These are located in the shuttle
payload area and can be easily removed to change the type of exper-
iments required for the mission.

11.1.2 Military Space Transportation_Program

The Military Space Transportation System was also reviewed for
this program. Figure 7 illustrates the Military S3pace Program for
the period 1975 to the year 2000.

This figure includes the military aircraft, space shuttie
system which is the same. system used for NASA, rocket launch sat-
ellite, ballistic missile, and military weapon systems.

Payloads in the shuttle include the military near-earth orbit
satellites and the military synchronous satellites using the re-
turnable tug. Sortie Labs are also being planned for the payload
area in the NASA Space Shutt1é progranm.

Dedicated rocket launch satellites are still being planned
for special experiments.

Intercontinental Ballistic Missiles and their reentry'vehicles

are also part of the Military Space Trahsportation System. In these

programs, silver-zinc batteries are used as the power source for
the power processing system.

The last category is the Missile Weapon System, either for
air-to-air combat or air-to-ground combat. In these systems the
power source is the thermal battery which provides power for a
very short time period. The Missile Weapon Systems have a dual
design constraint of minimum cost and minimum weight.

Notice in Figure 7 that the primary military space trans-
portation system uses the NASA Sbace Shuttle program as the princi-
pal launch vehicle and all aerospace payload programs will be de-
signed to fit into the shuttle payload area.
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11.1.3 Selection of Five Power Processing Systems

In Figures 6 and 7, the PPS's that were selected for the
Modeling and Analysis program have been identified. These sys-
tems include: {1) the space shuttle, (2) the synchronous satel-
1ites which include the near-earth orbit satellites in that they
are very similar in design, (3) the planetary satellites which
use a different power source and requffe extremely high relia-
bility, (4) the sortie laboratory using new high-power equipment
that,havé never been used in space before, and {5) military air-
craft. The new military aircraft was selected to insure that all
possible loads have been identified for the power<processing sys-
tem.

Table 4 summarizes the selected five power processing sys-
tems. The table includes mission, power source, distribution
voltage, power level, and design constraints for the spacecraft
or ajrcraft.

The space shuttle uses two_Qifferent'types of power source:
(1) fuel cell for the electronic and environmental control systems,
and (2) an APU (Auxiliary Power Unit) which drives the hydraulic
system during launch and reentry. Fuel cells provide 28Vdc and
will have a powef level of approximate]y'7kw (15kW peak} for each
of three redundant fuel cells. :

The returnable tug will include much of the equipment developed
for the space shuttle and will also use fuel cells (1.5kW) as the
power source. Therefore, the model developed for the space shuttle
system can be extrabo]ated for the returnable and non-returnable
tug power processing systems. ‘

The synchronous- satellite will use the solar array as the pri-
mary power source during sun]ight and the rechargeable battery dur-
ing launch and eclipse opekations'and for transient peaks. Distri-
bution voltages may include 60Vdc for the high power payload equip-
ment and 28Vdc for the remainder of the satellite equipment. Power
levels for the high voltage bus may go as high as 10kW while the
28V bus power will be .in the range of 500W.
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TABLE 4

SELECTED FIVE POWER PROCESSING SYSTEMS

, Distribution
Mission Power Source’ Voltage Power Design Constraint
Shuttle Fuel Cell 28Vdc 3x7 KW Crew Safety & Reliability
115/200V RMS 3§ -
400Hertz ,
Sortie Lab Fuel Cell 28Vdc/115v 19 7KW to Cost, Minimum Design &
~ 400Hertz 30Kd Fabrication Time -
115-208Y 39
, 1800Hertz .
Synchronous Solar. Array/Battery - 100Vdc/28Vde 10KW/500W Cost & Maintainability
Satellite _
Planetary Solar Array/RTG 300Vdc/28Vde/50v A 2OKW/S00W | Cost & Reliability
Electric : - 2.4KHz
Propulsion
Satellite '
Military Primary Engine Gen- 230-400v, 3P 140KW Cost & Maintainability
Aircraft erator, Emergency 400Hertz
Generator and Battery 115-200v, 30
400Hertz

28Vdc




The planetary satellites will include mercury ion engines for
electric propulsion to reduce the spacecraft flight time and thereby
_ reduce the reliability requirements for the total equipment. The

planetary satellite will include a high voltage solar array of approx-

imately 25kW power level to run the electric propulsion engines and
a radicactive thermoelectric generator (RTG) at approximately 28Vdc
to provide power for the experimenté and other electronic loads on
the spacecraft. The models generated for the planetary satellite
will fulfill both applications.

The sortie laboratory requires both a low cost and extremely
short development schedule, The primary power source for the lab-
oratory is a fuel cell in the space shuttle. When the experiment
power demands exceed the shuttle capability, additional fuel cells
will be added to the sortie laboratory to satisfy total power de-
mands. Expected power levels will range from 8kW to approximately
30k, These extra fuel cell hodu]es will be added to the payload
area in the sortie lab.

Although the military aircraft power processing system has a
vastly different load configuration from a commercial aircraft, the
mode] generated can be changed to satisfy the requirements'for the
commercial aircraft power processing systems. The reason for inclu-
ding aircraft systems is that the powér distribution is ac compared
to dc for other selected power processing systems.

In review, an attempt was made to select systems that included
all the different power sources; fuel cells, solar array, batteries,
radicactive thermoelectric generators, and engine generators.
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11.2 ° IMPORTANT CATEGORIES OF A USEFUL POWER PROCESSING SYSTEM
DOCUMENTATION

Figure 1 on Page 11 of this réport shows the items that affect
an optimum power processing system design,

The first item is the specific program design constraints:

e Cost
e HWeight
e Reliability

In most future programs, cost is a main design element. The
cost not only includes the initial cost (design and fabrication
of the equipment), but the cost of maintenance, and the operating
cost. In some instances, weight can be a design constraint in.
that there is a limitation of how much weight can be allowed to
have an effective program. In certain future programs, it may be .
possible that the power processing equipment can be repaired in
orbit or upon its return to earth; thus, reliability is no longer
an overriding program design constraint. However, the equipment
should be designed in such a manner that the equipment failure
does not propagate to the power source or to the load equipment.
The planetary spacecraft, on the other hand, must be designed with
reliability as a primary design constraint. ‘Ih this application,
repair of the power processing equipment is not possible since
there is no means of retrieving the satellite.

The second item is the Spacecraft/Aircraft design, This
category includes: (1) the size of the craft in that it determines
the cable runs from the ﬁower source to all load equipment, (2)
the payload, whether it is an experiment, a communication system'
or aircraft electronics, (3) the environment that the unit will
be subjected to, (4) the operating time of the unit before it can
be maintained and its effect on the design techniques for the
reliability of the equipment, and (5) the life requirements that
must be designed into the power processing system.



The third item that affects the power processing system
is the power source characteristics, This includes the power
source type (solar, chemical or nuclear) and the power source

.density.

The fourth item is the load equipment and its power require-
ments. The power processing system must process the power to the
load equipment so that the load equfpment can operate reliably

within specification.

The fifth item is the power processing equipment require-
ments. It must provide the correct interface between power
source, the load equipment, and aircraft/spacecraft.
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11.3 POWER PROCESSING AND LOAD EQUIPMENT LIST - BLOCK DIAGRAM
FOR THE FIVE SELECTED SYSTEMS

11.3.1 Power Processing and Load Equipment Classifications

In order to formulate a concise modeling and analysis program,
there must be an attempt to classify the power processing and load
equipment, thereby reducing the size of the program.

Table 5 1ists the power procéssing equipment 1ists for bbth'
the ac power distribution system and dc power distribution system.

Five basic categories are included under both ac and dc power
distribution systems. The line regulator provides the voltage reg-
ulation against variations due to the input power source character-
jstics and the output loads, with no input-output ground isolation.
The ac to dc converter provides the input-output isolation and
regulation requirements for the dc load equipment. The ac (and dc)
to ac inverter provides both output voltage regulation and fre-
quency control to satisfy the load requirements. Source power con-
trol includes breakers, fuses and the feeder cabling between power
“source and load control units. The load power control system in-
cludes localized breakers, fuses and the cabling to the different
subsystems.

Table 6 shows the classification of load'equipment that includes
avionic, propulsion, environmental control, power control and dis-
tribution, and payload. '

Avionic classification includes guidance and navigation, flight
control, data management, data storage, communications and display.

Propulsion system includes the main engine control, auxiliary
engine control, the air-breathing engine control, and the mercury
ion engine for planetary flight.

Environmental control includes that for manned flight in space,
the thermal control of aircraft through its environment, and the
control of spacecraft in its environment and fire protection.
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TABLE 5

POWER PROCESSING EQUIPMEN| bls]

AC POWER DISTRIBUTION

a) AC Line Regulator

- b) AC to DC Converter

¢)  AC to AC Inverter

-d) Source Power Control

¢) Load Power Control

DC POWER DISTRIBUTION

a) DC Line Regulator
b) DC to DC Converter

~c¢) DCto AC Inverter

d) Source Power Control
e) ‘Load Power Control

TABLE 6

CLASSIFICATION OF LOAD EQUIPMENT

Avionic

Propulsion

Environmental Control

Power Control & Distribution
Payload
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Power control and distribution include the control of the
power source, the source distribution which may include battery
charger, max-power point tracking, and the load distribution,

The payload includes experiments, high power communications,
and weapon systems, ' '

In this grouping of power processing equipment and load
types, simplification of the modeling and analysis techniques
can be obtained.

11.3.2 Space Shuttle System Block Diagram

The space shuttle system is the primary NASA transportation
system to be used after 1975 for all space experimentation. It
is a manned system and it requires maximum reliability to insure
safety of the crew. The space shuttle system is being designed
with at least a 10-year operational 1ife in order to be cost

~ effective,



Figure 8 {llustrates the basic power processing distri-
bution systems that will be used for the space shuttle. The
primary power is from three separate 28Vdc, 7kW fuel cells.

Each fuel cell system feeds a complete shuttle system with
all its loads. In this‘way,;there are three identical power
processing systems so that two failures in the system will not
 cause a loss of the shuttle.and it can still opérate with the
third remaining channel.

The main breaker protects the fuel cell. Breakers are
used on each feeder line going to different equipment areas of
the shuttle. These areas include forward equipment bay, the
pressurized equipment bay, left-wing equipment bay, right-wing
equipment bay,'and aft equipment bay. Each equipment bay'has its
own dedicated load distribution center which includes additional
circuit breakers and fuses to protect against faults in the load
distribution cable and Toad equipment.

One feeder line provides power through a current 1limit source
to the emergency battery. . This emergency battery is used during
fifing of ordinances reduiring'high peak currents and to supply
critical loads during abnormal modes of operation.

Separate battery chargers can take energy frpm any one of the
three fuel cells and charge the emergency battery used in any of
the three redundant power processing systems.

In thfs manner, a very reliable system is realized which is
capable of sustaining multiple failures and still be operational,
thus providing uppermost safety for the astronauts.

The space tug power processing system is very similar to the
shuttle power processing system, but it only includes two redundant
fuel cell power processing distribution systems.
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11.3.3 Sortie Lab System Block Diagram

Many scientific experiments are being planned for the shuttle
program wherein the experiments are mounted in the shuttle payload
area. These experiments wi]1‘1asiifrom 7 to 14 days, depending on
the capability of the space shuttle itself. These space lab experi-
ments can be either manned or unmanned, depending on the type of
scientific data being obtained. The pkimary objective of the space
laboratory is to'a110w extremely low cost, fast redesign and turn-
around of equipment and use of existing hardware whenever possible,

Figure 9 illustrates the power processing .system for the
space lab. Twenty- -eight volts from the shuttle fuel cell are in-
verted to 115V, 400 Hertz, to operate all the low-power equipment.
Total power capability of the system is approximately 7kW. For
extremely high power experiments, additional fuel cell modules will
be added to the shuttle payload area to provide power to the ex-
periments. This 28Vdc power will be inverted to high-voltage, 3-
phase high frequency power to supply the special experiment loads.

An additional 400 Hertz inverter will also be included to
supply other additional Tow poWer test equipment. It is expected
that the space lab module will be adapted to scientific experiments
and will have many more applications. 'If is important that we es-
tablish optimum low cost designs for this power processing system.

11.374 _ ‘Synchronous Satellite System Block Diagram

Synchronous communication satellites have the highest power
requirement and are being used as basic models for all earth orbi-
tal satellites. This mode1 can be interpolated to form a power proc-
essing system model for all other systems. The principle differ-
ence between the synchronous satellite and near-earth orbit satellite
is the ratio of eclipse to sunlight time and the amount of energy
storage in the battery system.
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Figure 10 illustrates the power précessing system for a syn-
chronous satellite. It includes both‘a high voltage array to oper-
ate high power transmitting equipment, and a Tow voltage solar array
to supply power for the standard spacecraft equipment and experiments.,
To improve the basic reliability of the satellite, it is anticipated
that a completely redundant power system identical to Channel #1
would be used. The Tow voltage system-also includes the storage
battery to operate the spacecraft during launch, transient operating
modes and eclipse operation. '

11.3.5 Planetary Satellite System Block Diagram

Many exploratory satellites are being planned to observe other
planets in our solar system, comets and space beyond our solar system.
It is extremely important that the cost of these satellites be min-
imized to allow a full coilection of data to determine the nature of
our solar system and the nature of our planet.,

Figure 11 illustrates the power processing system planned for
the planetary satellite programs. It includes a high voltage solar
array to operate ion engines for electric thrust which minimize the
flight time of the satellite. As the spacecraft flies away from
the sun, the output power decreases due to the loss of illumination,
therefore the power processing requires the throttling of the ion
engines, by turning off'ian_engines or by changing the beam current
to match available solar array power. As the spacecraft is further
away from the sun, the solar array temperature decreases causing
the operating potential of the solar érray to increase. Thus, the
high voltage solar arréy is constantly changing its power level and
operating voltage as it flies away from the sun, and therefore re-
quires the power processor to provide a load matching between the
ion engine and the high voltage solar array.
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An RTG is used to supply the power to spacecraft equipment and
experiments. The storage battery is used to handle peak transient
conditions during abnormal operating modes of the equipment.

To improve the reliability of the power processing system, re-
dundant RTG units and power procéssing systems are used, as shown
in Figure 11.

In some instances, the RIG could be eliminated and the high
voltage solar array bus could be conditioned to satisfy the voltage
requirements for the spacecraft equipment and experiments,

In applications where electric propuision is not -required,
this model can be modified for the new spacecraft design.

11.3.6 Military Aircraft System Rlock Diaaram

Aircraft includes elaborate power processing systems which can
be modeled in a fashion similar to the shuttle and satellites
studied earlier. Because of this commonality of equipment, this
modeling and analysis program will benefit the aircraft power sys-
tem designer.

Figure 12 illustrates the power processing system for a
military aircraft where there were four 3-phase 400 Hertz engine
generators, each engine generator feeding an elaborate system with
load distribution control centers. Tie breakers are used to cross-
strap the engine generators in case of an engine generator failure.

An auxiliary power unit (APU) is used for startup of the air-’
craft and during emergency operation. An emergency battery is also
used to supply critical loads during abnormal conditions of the ac
engine generator system,

This basic power processing system can be used to model other
aircraft power processing systems such as small military, commercial .
and small private aircraft.
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11.3.7 Equipment List for Five Selected Power Processing Systems

A preliminary power processing equipment 1ist was generated
for the five selected power processing systems for the Modeling and
Analysis study. These programs include Space Shuttle, Sortie Lab-
oratory, Synchronous Communications Sate111te, P1anetary Spacecraft
and Military Aircraft. '

Since these programs are in the initial planning stage, exact
design specifications do not exist. This list identifies the basic
classification of poﬁer processing equipment that must be studied
in order to model the complete power processing system.

Shuttle. Table 7 summarizes the shuttle nower processing eauin-

ment 1ist according to the five subsystems---avionics, propulsion,
environmental control, power control and distribution and payload.

Under the avionic system are included: (1) guidance and nav-
igation, flight control, data managemeﬁt, data storage, communications,
and display. The different power processing equipment have been
identified for each section of the avionics system. Additional data
is required to estab11sh both the power level and operating voltage
required from the power processing equipment and from the unregulated
power processing bus.

In order to design and optimize power processing systems, it
it required to know the total power distribution loads, both unregu-
lated and regulated.

The propulsion system includes the equipment necessary to
contrel and monitor the operation of the main propulsion engines,
auxiliary propulsion unit, and air-breathing engines during final
flight and landing. '

The environmental control system includes not only the control
of the air temperature for the astronauts, but also the environmental
control for all equipment and the fire detection system.



TABLE 7
SHUTTLE POWER PROCESSING EQUIPMENT LIST

Avionics Subsystem

Guidance and Navigat1on DC-DC Converter
DC-AC Inverter

- F11ght Control DC-DC Converter
_" DC-AC Inverter

Data Management DC-DC Converter
Communication DC-DC Converter
Display DC-DC Converter

Propulsion Subsystem

Ma1n Propu]s1on Engine DC-DC Converter
" DC-AC Inverter

Aux111ary Propu]s1on System DC-DC Converter
DC AC Inverter

A1r Breath1ng Eng1ne System DC DC Converter
DC- AC Inverter

Environmental Control Subsystem

Env1ronmenta1 Control System DC-AC Inverter
DC-DC Converter

Power Control & Distribution Subsystem

Aux111ary Power Unit DC-DC Converter
" DC-AC Inverter

Fue1 Cell DC-DC Converter
*  pC-AC Inverter

Load D1str1but10n ‘Unit DC-DC Converter
“  DC-AC Inverter
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The power control and distribution system includes the
necessary controls for the fual cell, auxiliary power unit, emer-
gency battery, source control and power distribution unit, and
load power and distribution unit. There is an additional subsystem
in the shuttle payload area which may take on many different formats
and cannot be generalized at this time other than it provides a power
capability in the payload area,

Sortie Laboratory. Table 8 Tists the equipment planned for

the space laboratory. The subsystems are grouped into avionics,
environmental control, power control and distribution system, and
experiments. |

The avionics subsystem is simplified over that of the shuttle,
It provides a data management system, communications with the shuttle,
and a display in the space lab.

Environmental control is required for controlling the ambient
in the space lab, area and controlling the temperatures of the equip-
ment. '

The power control and distribution subsystem 1is different
from the other systems that have been reviewed. A fuel cell power is
inverted into either 400 Hertz or 3-phase 1800 Hertz for distribution
throughout the space lab to reduce cable weight and to minimize the
wiring problems when working with power levels up to 30kW. There will
be a need for modularization of the dc to ac inverter systems in order
to obtain the required power Tevel.

The experiment subsystem is not clearly defined at this time
other than it will use existing equipment designs converted to 400

Hertz operation for the low power scientific experiments. With
high power equipmeni, redesign may be required to control the temperature

in the space lab. area and its effects on the thermal contrgl system.
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TABLE 8.

SORTIE LAB POWER PROCESSING EgUIPMENT LIST

Avionics Subsystem -

Data Management DC-DC Converter
Communication DC-DC Converter
Display DC-DC Converter

Environmental Control System

DC-DC Converter
DC-AC. Inverter

Power Control & Distribution Subsystem

Fuel Cell DC-DC Converter

! " DC~AC Inverter
Low Power Experiments Bﬁs DC~-AC Inverter
High Power Experiment Bus EC-AC Inverter

Experiment Subsystem

Low Power AC-DC Converters
High Power AC-DC Converters
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‘Synchronous Satellite. Table 9 summarizes the equipment
lists used on the synchronous satellite. Again, it is divided
into the basic subsystem categories of avionics, propulsion,

environmental control, power controls distribution and payload.

The avionics subsystem provides tracking, telemetry and com-
mand, the lower power communications, and attitude and control.
It is also possible that some data management and data storage
could also be available.

The propulsion subsystem includes the stationkeeping ion engine.

The environmental control system provides the necessary heaters
to control the environment for equipment during launch and eclipse
operation where undue low temperature could cause equipment failures.

Power control distribution subsystems include solar array regqu-
lator controls, battery chargers, batteries, and the source power -
control and distribufion system. Because of the small size of these
satellites, there may not be a negd for separate load power control
or distribution system.

The payload subsystem for the synchronous satellite could include
low power TWT's which in turn drive high power TWT's for direct broad-
cast applications. ' '

In near-earth orbit applications, the payload system could include
elaborate television cameras and sensors for observation of the earth
or observation of the sun.

This model for the earth orbit satellite can be easily modified
to suit various military programs.

112



TABLE 9

EARTH ORBIT SATELLITE POWER PROCESSING EgUIPMENT LIST

Avionics Subsystem

Tracking Te]emetry/Comménd pc-DC Converter
Communications DC-DC Converter

Attitude Control DC-DC Converter

Attitude Control DC-AC Inverter

Propulsion_Subsystem

Station Keeping lon Engine DC-DC Converter

power Control & Distribution Subsystem

Solar Array Shunt Regulator (DC Regulator)
Battery Charger (DC Regulator
Battery Discharge'Regulator (DC Line Regulator)

Payload Subsystem

Low Power TWT DC-DC Converter (22-33vdc Input)
High Power TWT DC-DC Converter (50-100Vdc Input)
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Planetary Satellite.  Table 10 illustrates the equipment list

for the planetary satellite power processing system. It is divided
into the major subsystems of avionics, propulsion, environmental
control, power control, distribution, and experiment subsystems.
This equipment list is very similar to that developed in Table 9
for the synchronous satellite, with the exception of the high power
ion engine which must operate from a 200 to 400Vdc input. ‘



TABLE 10

PLANETARY SATELLITE POWER PROCESSING EQUIPMENT LIST

Avionic Subsystem

Tracking Telemetry/Command DC-DC Converter
Communicétion DC-DC Converter

Medium Power TWT DC-DC Converter

Attitude Control DC-DC Converter

Attitude Control DC-AC Inverter

Data Storage Unit DC-DC Converter

Date Mahagement DC-DC Converter

Propulsion Subsystem

Ton Engine DC-DC Converter (200-400Vdc Input)

Environmental Control

Power Control & Di;tribuiion System

RTG Shunt Regulator (DC Line REgulator)
Battery Charger {DC Regulator)
Battery Discharge Regulator (DC Line Regulator)

Experiment Subsystem

Experiment DC-DC Converter
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Military Aircraft. Table 11 lists the pover processina eaquip-

ment used in a military aircraft such as the Bl which is in devel-
opment now. It is grouped into the basic subsystems such as:
avionics, propulsion, environmental control, power control and dis-
tribution, and payload.

The avionics system is somewhat similar to the avionics system
used in the shuttle, only the propuision system includes the air-
breathing jet engines. '

The environmental control system controls the environment for
the pilot, the aircraft, and the electronic equipment.

The power control and distribution subsystem controls the output
of the engine generators, auxiliary power unit, and the battery charger
for the emergency battery.

The biggest difference between aircraft is in the payload. It
may include a tactical electronic warfare system which is used for
bombing, fire control, and jamming of enemy radar or weapons systems,
The payload may also include a high power radar and its elaborate
scanning system. The electronic countermeasure TWT's included in the
payload are used to jam enemy tracking systems. A new subsystem under
development is a laser that can be used for pkotection of the aircraft.

Here is a new set of power processing equipment requirements that
have not been identified in the preceding power processing systems
discussions. '



TABLE 11

MILITARY AIRCRAFT POWER PROCESSING EQUIPMENT LIST

Avionics Subsystem -

Guidance & Navigation AC-DC Converter
Guidance & Navigation AC-AC Inverter
Flight Control AC-DC Converter

Flight Contro]'AC—AC Inverter
Communication AC-DC Converter

Data Management AC-DC Converter
Display AC-DC Converter

Propulsion Subsystem

Main Propulsion Engine AC-DC Converter
Environmental Control Subsystem

Environmental Control AC-DC Converter

Power Control & Distribution Subsystem

Main Engine Generator Controller
Auxiliary Power Unit Generator Controller
Battery Charger (AC-DC Regulator)

Payload Subsystem

Tactical Electronic Warfare System AC-DC Converter
Radar AC-DC Converter '

Radar AC-AC. Inverter

Electronic Countermeasure TWT AC-DC Converter
Laser AC-DC Convertef
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11.4 SOURCE/PPE/LOAD INTERACTIONS

In order to determine the interface fequirements for the
power processing equipment, it is necessary to determine the
interactions between the loads, bower processor, and power source.
Any error in the specifications of these interactions can gen-
erate a penalty in the design of the powef processing equipment
or result in power processing equipment that will not fulfill
requirements. ‘

Table 12 summarizes the possible interacting parameters.
Their interactions must be identified for each type of eguipment
and power sources of the five selected PPS's,

The variation of the load demand must be described in terms
of the power and the frequency. Overload conditions, transients,
or arcing must be identified so that adequate protection can be
designed into the power processing equipment to protect itself
and the power source, '

Consideration of power source voltage transients affects
the design of the power procéssing input filter and design of
power processing regulation techniques. It is important to iso-
late these transients from being reflected to noise sensitive
Toad equipment such as digital computer circuits.



TABLE 12

INTERACTIONS

Load Yariation

toad Overloads/Transients

Power
Power
Power
. Power
Power
Power
Power
Power
Power

Power

Processor Input Filtering

Processor Regulation Technique

Processor Switching Freﬁuency

Processor Internal Protection

Processor Lbad Protection

Processor Reflected Current-Steady State
Processor Reflected Current-Transient
Source Impedance

Source Voltage Variatfon

Source Voltage Transients
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The power processor input filtering must be controlled in that
it can interact with the input filters on other equipment, the power
source or the power processor itself due to the power processor's
negative impedance.

The power processor regulation techniques also interact with
the load, and the reflected current back into the power source.
The regulation techniques used can greatly influence the performance |
of the nower processing equipment during dynamic variation in the
power source or load equipment.

The power processor switching frequency also has an interaction
on the values of the input-output filters, the values of the ripple
frequency on the output and the reflected current ripple frequency
back into the power source. The switching frequency greatly influ-
ences the efficiency and weight characteristics of the power proces-
sing equipment.

Any power processing load protection used will also interact
with the internal design techniques.

The power processor reflected current transient whether due to
initial charge of the input filter, turn-on transients of the power
processing equipment, or due to load shorts or tranéients, must be
controlled to eliminate disturbance of the power source. This dis-
turbance of the power source is reflected as an input disturbance
to the remaining power processor equipmeht.

The power source impedance interacts with the power processing
equipment in that it can disturb the resonant conditions of the input
filters and acts as a coupling impedance between various power proc-
essing systems under load variations. These load variations cause a
power source variation which can be either a low frequency transient
or a high pulse transient. These variations can also be due to change
in the power source capability due to either illumination variations,
or overload conditions that cause collapse of the bus system.



DESIGN EQUATIONS TO ACHIEVE MINIMUM TOTAL WEIGHT OF MAGNETICS AND SQURCES

The weight optimization can no longer be limited to the magnetics
alone if one wishes to minimize the combined weight of (1) the magnetics,
and (2) the portion of the power-source weight necessary to supply the
losses in the magnetics. Rather, there exists a conversion factor K relating
the losses in magnetics to the additional source weight needed to supply
these losses. One must therefore minimize [(magnetics weight) + K (loss in
‘ magnetics)], where K is estimated as 0.015kg/watt. In the following
deviat ns, an inductor is used as an example for design.

Copper and-Iron Losses

Let the rms current in the winding be I
becomes:

rms * then, the copper loss PC

. 2 X 4FCN\/A | (1)
c rms Nc ‘
where o is the resistivity in oﬁm~meter, Ac is the winding cross-sectional
area in meterz, 4F2JE'-15 the mean length per turn of the copper conductor

in meter,. and N is the number of turns,

The iron Toss in joule/cycle corresponds to the area ¢ (ZNID),
where m is the flux excursion, NI0 is the amp-turns required to magnetize
the core. Since NI0 = Hz and O = BmA, where z is the mean length of
magnetic path, and A is the cross-sectional area of the core, the energy
loss per cycle becomes ZBmHAz. Consequently, the iron loss corresponding
to an operating frequency F becomes

P, = 2B HFAz _ o {2)

Total Source and Magpetics Weight

Using the aforementioned factor K, the additional source weight is

2 4FCN A ) . '
W, =K (Ims o "‘A‘;"“ + ZBmHFAz) | (3)

Adding to this weight the weight of the magnetics, which is
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| (4
wm = 4FCACDCNWIE'+ DiAz, where Dc and D1 are copper and iron densities,

the combined source and magnetics weight to be optimized becomes:

) 4FCN-\/E

Wy = 4|:CUCNV'A'AC + DAz + K (I‘,,mS P —--A-(-:-—— + ZBmH'FAz) (5)

Optimization Approach

The total weight represented in Equation (5) is to be optimized based
on the same two constraints concerning the jinductance required and a window
to be filled. These two constraints are:

LI
NA = & J (6)
AT |
\/;%;'*2%"*1?—-” (7

For simplification purpose, let

K] = 4FCDC
K2 = D,i + ZKBmHF
) (@
K3 = 4KIH“SDFC
K4 = LIp/Bm
K5 = ]/'\)ﬂFw
K6 = §/2n
K7 = 1/2

-x='\/ﬂ_t,y=\/ﬁ,v=‘ﬁ\;

Then, Equations (5) to (7) are reduced to:
2
K,y X
2 2 3
NT = K]xy v szzz + -—-zﬁfﬂ— . : . (9)



2 2

Y- Ky =0 (10)
Ksyv - Kﬁz + ny =0 (11)
The optimization function h (x,y,z,v) becomes:
. ' 2 (12)
22 . . 2. . KV 2.2
h(X,y,2,v) = koxy"™ve + Kpx"z + —7 a{xy" - Ky) - B (Kgyv - kgz +Kyx

where o and B are the Lagrange Multipliers. Thus, in addition to the two
equations given as Equations (10) and (11}, one has the following four
more equations: '

ah ah oh

eh g, 2h 2, -0

X v

These six equations can be used to solve the six unknowns, X,y,Z,v, o and g.
A design based on these core and winding parameters represents the minimum
combined magnetic and source weight., The optimum permeability p can then
be found from x,y,z, and the required inductance L through the identity

L = uN°A/z.

The four aforedescribed partial differentions yield:

'%%%‘= K]yzv2 + 2Kyxz + —Etzi— - anyz ) gky = O (13)
——g-;— = 2!(.|xy‘v2 + _Ef_;zxy_ - Zuxzy - 8Kgv =0 (14)
Sk 4 Kes = 0 - (15)
A dpayy - g g 0,y < 0. U

Optimization Results:

By solving Equations (10) to (16), the following results can be
obtained: -
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(LI oF,, )1/2 iy )
N = \—g— S 17
cm
LI A 1/2
A= (_“Earc_) 3 | | (18)
mw .
LILA \1/4 7 1/2 . : _
z = 2n (_nB.P-FC_) (..5.2__ + 5“1/2) (19)
mw
-b +\/b%-dac \1/2 KIZ, o
A, = 53 » choose A < -—12;-—— | (20)
B \5/4 3/4 1/2 )
“=2“(1m) (ﬂAc) L1/45(5 +51/2) | (21)
p Fw 2
S
4Fch A? . 'Dc
S = e (22)
D, + 2K HF
Where '
. Dy + 2KB HF
— . m
a = 3D, (4FCDC - )
F
W
(23)
D, + 2KB_HF
_ 2 i m :
b = KI o - - 24 F D,
W
- 2 \2
c=12 (Klrms‘)) FC

Substituting these values for'N, A, Z, and Ac with eq. (5), the minimum

total weight (wT) of the magnetics and the source becomes

min
31 2
LI A \3-2 KIS P
- ¢ _rms_ S
(Wr)pin = 27 ﬁi—r; s |2FF (D, + L2 ) + (Dy + 2KB HF)S(1+3) (24)

C
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The optimum design equations shown in this appendix are based on
a toroid magnetic core configuration. However, they are easily modified
to fit other physical configurations such as rectangular or double-E.
" The only change needed is for eq. (4) of this appendix, to reflect the
new core geometry since eq. (4) js based on a toroid configuration with a
square cross-section. |

The éame‘approach described herein, when applied to a transformer
design using a sduare-]oop B-H core, can lead to a set of optimum design
equations. The equations are identical in form to those presented, except
that the quantity Llp is replaced\by the volt-second content of the trans-
former design. The results thus obtained for a square-loop B-H transformer
were successfully applied to the transformer design of the 2KW, 2KV fon-
engine power conditioner. It was found from the design equations that the
ferrite core, although seemingly superior in losses, actually produced a
heavier total system weight when compared with another higher-loss material
of larger flux-density.

A particular note of interest concerning these design equations is
the fact that, once the inductance L and the peak current Ip are known,
one can directly calculate the magnetics weight and for a given magnetic
material the total system weight without actually performing'any design
on the inductor or the transformer itself. The advantage offered by this
time-saving feature, particularly for a parametric study program, is obvious.

Conclusion

Equations specifying the core dimension, the permeability, the turns,
and the conductor size are derived to facilitate a toroid inductor design
leading to an overall minimum combined weight for the magnetics and the
portion of the source necessdry to supply the inductor losses. The designed
inductor is one such that its window is essentially filled, and the magnetic
capability of its core is fully utilized without reaching saturation.

Using this same method of Lagrange Multiplier, the same optimization
procedures can be, and have been applied to other optimizations to include: .
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o The design of saturable rectangular-BH-1oop transformers

o The design for both inductors and transformers under different
optimizing constraints. These constraints include the minimum
magnetics weight per se for a given loss, or the magnetics design
yielding a minimum weight-loss product.

These advanced'design orocedures, often in closed expression form

such as those presented herein and readily adaptable for digital computation,

are believed to be ahead of the state-of-the-art in magnetics design.

Since a majority of the power-conditioning subsystem weight 1s caused
by the power magnetics, the utility of a set of well-conceived optimum
design equations will certainly contribute to the program objective of
maximizing the power density of the spacecraft power system.



11.6 AN EXAMPLE OF PREVIOUS PARAMETRIC STUDY RESULTS

The example consists of parametric data for LC type of DC filtering.
The following four cases are considered:

Case 1 - Small Alternating Current

An example is an input filter to a square wave inverter where no
appreciable ac current or voltage is applied to the filter,

Case 2 - High Alternating Current

An example is an input filter in a switching bucking regulator where
high ac current exists in the filter capacitor.

Case 3 - High Alternating Voltage

An example is an output filter in a switching bucking regulator where
high ac voltage exists in the filter inductor and minimal ac current in
the filter capacitor.

Case 4 - High Alternating Current and Voltage

An example is the output filter on a buck-boost switching regulator
design where there is high ac voltage across the inductor and high ac
current in the filter capacitor. '

Parametric data on losses, weights, and failure rates have been computed
for these functions over a voltage range of 30 to 300 volts. For this set
of data, the switching frequency is assumed to be 10 KHz. The specified
power and voltage ranges have been rearranged into a set of discrete func-
tion design points that effectively cover the desired ranges:

Output voltage 30, 100, and 300 Vdc
Power 1 KW, 3 K, and 10 KW

The parametric data as developed from the analysis models generated is
illustrated graphically in Figure 13 by four curves:

® Percentage loss versus operating voltage at a fixed
power level

e Weight versus operating voltage at a fixed power level

e Failure rate versus operating voltage at a fixed power
level

& Scaling constant curves for percentage loss, weight, and
failure rate versus output power level at a constant
voltage and frequency.
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The percentage loss, weight, and failure rate are plotted as a function
of operating voltages for a seected switching frequency and output Tevel.
The scaling constant curve allows the three curves of percentage 10ss,

.weight, and failure rate to be modified as a function of output powver level..

To use the scaling constants, the percentage loss, weight, and failure rate
for a selected operating voltage and frequency are determined from the first
three curves, which are plotted for a 1 K design operating at 10 KHz. The
scaling constant curves give the multiplying factors that are used to change
the original data to the data at another power level.

Percentage loss here is defined as the ratio of the losses to the sum
of losses and output power. This is selected rather than efficiency
because it simplifies the analysis of relationships of individual functicnai
Josses to total power conditioner loss. Efficiency can be determined as
one minus the percertage loss. '



11.7 CUMULATIVE POWER PROCESSING FUNCTION PARAMETRIC DATA

The power functional design data characteristics are accumulated
to determine the overall power conditioning equipment characteristic.
Examples of parametric data from the final report of Contract NAS 7-546,
"Analysis of Aerospace Power Conditioning Component Limitations," are
presented in Figures 14, 15 and 16, for a switchina buck-type
line regulator. These data were generated in 1968 and 1969, and do not
include up-to-date new component characteristics, new electrical design
. methods to reduce losses, and improved component failure rate. These
figures illustrate the presentation‘of power conditioning parametric
data and its analysis techniques.

These curves show, graphfca]]y, the cumulative effect of individual
power functions on total power conditioner percentage loss, weight, and
failure rate. The weight data given excludes the effect of signal level
functions, packaging, cabling, and connectors, but includes the weight of
semiconductor heat sinks for component thermal control. On Contract
NAS5-21066, "20 KW Battery Study Program," techniques to inciude signal
level functions and power conditioner packaging effects have been developed
so that complete power conditioning parametric data can be accurately deter-
mined.

In the following paragraphs, the general nature of these results is
described: ‘

Percentage Loss. The loss curve (Figure 14 } portrays total con-
ditioner percentage loss as well as the cumulative contribution of individ-
ual functions at any particular switching frequency. The vertical distance

between two curves at a selected frequency represents the percentage losses
of a particular power function at that frequency. Additional minor losses
due to the signal functions and power cabling are not shown. Power con-
ditioner efficiency can be determined as one minus the percentage loss.
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At low switching frequencies, the output filter losses were made large
to reduce the weight of that function. This is a classical example of the
interaction between weight and ‘losses depending on the design techniques
on the parametric function. '

At high switching frequency, the switching characteristics greatly
increase the losses in the power modulation function. New components with
improved switching characteristics and the development of the energy
recovery networks have greatly improved this characteristic.

When determining total loss, a slight error exists in accumulating
the individual losses in this manner. Thus, when there are three functions
with 1, 2, and 4% losses, respectively, the accumulated loss (as determined
by taking the sum) is 7%, indicating a conditioner efficiency of 93%.
Efficiency, as actually calculated; i.e., by multiplying individual effic-
jencies of each function, is 0.99 x 0.98 x 0.96 = 0.931; thus, a net error
of 0.1% efficiency exists in the former method. Despite the small error
inherent in this method, losses in individual functions can be compared
with each other, and the predominated ones are easily determined.

Weight. The weight graph {Figure 15) is also cumulative in that
vertical distance between two curves at a selected frequency represents
the percentage weight of a particular power function at that frequency.
The graph shows the effect on power system weight due to the additional
amount of primary power source required to supply losses in the power
conditioner. The factor 0.6 1b/W is used for this computation since it
represents the penalty involved with a typical power source configuration
such as a solar array/battery to compensate for the losses in the total
power conditioner. The data, as previously noted, do not include the
weight of signal functions, mechanical packaging, cabling, or connectors.
Since the generation of these data, functional data for signal functions
and mechanical packaging have been determined and complete power conditioner
weight can be more accurately determined.
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In analyzing the data shown in Figure 15, both the input
and output filter weights are large at the low switching frequen-
cies due to the large size of the filtering elements.

At high frequencies, a slight weight penalty is incurred
in the power modulation due to increased weight of the semiconduc-
tor heat sinks. Proper thermal design characteristics are required
to achieve low failure rates for the semiconductor components. As
described earlier, the use of the energy-recovery networks can sig-
nificantly change the shape of this curve.

The additional weight of the power source at high switching
frequencies is due to the increased losses in the power modulation
function. Here, again, the interaction of losses and weight is '
seen in the equipment design. '

" Failure Rate. The failure rate curve (Figure 16) is a cum-
ulative graph where the vertical distance between two curves at a
selected frequency represents the failure rate for a particular
power function at that frequency. It does not include the failure

rate of signal functions.

At low switching frequencies, both the input and output fil-
ter failure rates are high due to a large number of parallel cap-
acitors necessary to obtain the total capacitance value.

Failure rate data and component derating factors must be
standardized in order to obtain meaningful reliability calculations
for the total power system.
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11.8 EXISTING CONTROL MODE, CONTROL MECHANISM AND MODULATION
i~ PHILOSOPHIES

A power processing system embodies disciplines from several
fields. A DC-to-DC converter-regulator, for example, contains a
feedback loop closed around a DC amplifier, and its properties
and design, therefore, involve those of the distinct fields of
DC amplifiers and feedback amplifiers or servomechanisms. In
many cases, the converter-regulator may be required to have a
low output impedance up to frequencies in the megahertz range,
and so the system also incorporates the problems of video ampli-
fiers. Finally, and most significantly, the system incorporates
ideally-lossless switching processes which introduce inherent
nonlinearities into the processing functions. In general,
therefore, a power processing system is a nonlinear DC to video

frequency control system.

‘ The literature of power processing systems pertaining to
these various subfields is potehtia11y teeming with significant
analysis and modeling efforfs. -The literature survey has shown,
however, that there has been very little attempt at synthesis

of the numerous analysis and design approaches as applied to the
special problems of power processing systems. There are two

principal reasons for this:

(1) established analytical methods are rather sharply divided into
Tinear and nonlinear techniques, and the nonlinear techniques usually
apply to a particular type of nonlinearity, namely a hysteretic
switch, which is only one of several switching concepts employed in
power processing systems; (2) device modeling and circuit analysis
techniques for switching-modé functions are usually directed towards
low-power digital applications in which the available elements are
switches, resistors, and capacitors; in contrast, in power processing
systems, the available elements are switches, inductors, and capaci-
tors, for which the entire design philosophy and. modeling and anail-
ysis techniques are different.
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In the absence of established and accepted catalogs of design
concepts and analysis techniques, workers in the power processing
field tend to adopt an arbitrary design concept to meet specific
system requirements, usually, it seems, determined primarily by
previous experience and familiarity with the chosen concept rather
than by any more objective criteria concerning the "best" approach.
The same is true with regard to choice of analytic technique. The
present status of the field, therefore, is that of a number of
conceptual implementations and a number of analytical techniques
available, each has been partially developed, but with no compara-
tive information. A survey of these follows: '

11.8.7T System Configurations

Single-Loop Switching Regulators

The essential elements of a single-loop regulator are shown in
Figure 17,  The inhérent nonlinear functions are contained in the
Modulator and Power Stage, in which the Modulator converts an analog
signal into a form of digital signal which in turn operates a con-
trolled sampling switch in the power stage. The analog signal re-
covered by the low-pass filter constitutes the DC output.

Although tontro1 of the DC putput is always affected via the
ON/OFF duty ratio of the sampling switch, there are two possible
classes of control mode, one of which has several subclasses:

1. Timing Reference .

a. Constant TON
b. Constant TOFF

c. Constant T¢ = Toy + Tper (clocked,_dr1ven)

d. Constant product of input voltage E and TON’
i.e., constant E TON
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2. Free-running {constant ripple, limit cycle, bang-bang)

The TON and TOFF refer to the ON and OFF times of the sam-
pling switch, and TS is the switching period.

There are two possible classes of power stage configuration:

1. Buck (chopper)
2. Boost (flyback)

These are shown in Figure 18, The buck-boost configuration,
with respect to its signal transmission round the feedback loop,
is topologically the same as the boost configuration. = There are
numerous modifications of each of these classes, including sym-
metric push-pull switches, use of coupling transformers, and use
of tapped inductors; however, the modeling of these modifications
involves only simple scaling of the properties of the basic class.

The function of the Modulator is to convert an analog ampli-
fied error signal into a related time interval. This functional
relation can be of four types:

1 Non-integrating explicit
2 Non-integrating implicit
3. Integrating explicit
4 Integrating implicit

In the non-integrating types, the timing interval is de-
termined by an instantanecus .sample of the error signal; in the
integrating types, the timing interval is determined by the integral
of the error signal over some previous period. In the explicit
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types, the timing interval is determined explicitly by the
value of the error signal at a known instant or by its integral
over a known period, and in the implicit types, the timing
interval is implicitly determined by the instant at which the
instantaneous error signal or its integral reaches a given
value.

Two-Loop Switching Regulators

A two-loop switching regulator contains an "outer® loop
in which the output voltage is regu]ated; as in Figure 17, and
an additional "inner" Toop in which a different quantity of
the Power Stage is also sensed and fed into the Modulator.
While two-loop systems are not widely known, three types have
been extensively developed, each of which is associated with a
particular organization:

1. NASA/TRW ("ASDTIC") (Figure 19).
2. Bose Corp. ({Figure 20).
3.  Hewlett-Packard Co. (Figure 21).

In the NASA/TRW system[26’ 311

voltage across the filter inductor, integrates it, and combines

, the inner loop senses

it with the error signal of the outer loop. The inner loop
essentially senses the instantaneous AC current in the filter
inductor. 1In the Bose System[}g’ 32 ], the filter inductor
current is directly sensed and combined with the outer loop
arror signal in the Modulator. The principal difference in the
two systems is that in the Bose System, the inner Toop frequency
response extends down to DC. In the Hewlett-Packard System ,
the filter is in two cascaded sections, and the inner loop senses
the output voltage between the two sections.

The variety of functiond] implementations listed under single-
loop systems is also available in two-loop systems,
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11.9 POWER PROCESSING EQUIPMENT PERFORMANCE ANALYSIS METHODS

There exists a variety of methods applicable to power processing
equipment performance analysis. The techniques to be considered, and their
merits and disadvantages, are summarized.

11.9.1 Applicable Analytical Methods

The methods include the following major categories:
(1) Frequency Domain Linearization Techniques

] Sample Data Z-Transform
. Describing Function

(2) Time Domain Discrete Model:
(3) Computer Simulation

* Digital: TESS (TRW Extended Sceptre Software)

CSM/0/P (IBM Continuous System Modeling
and Optimization Program)

. Analog

11.9.2 Discussion on Different Analysis Technigues

The describing-function analysis requires that harmonics of the output
of the nonlinear element are neglected. In the case of a dc to dc power
processing equipment, the relatively low freguency of the output filter as
compared to the switching frequency helps to provide a valid reason that
generally holds this assumption true. Consequently, performance and oscil-
Tation stability can be examined both conceptually [34 ] and experimentally
[35] by injection of a "test” signal into the loop, from which the loop gain
as a function of complex frequency is determined. The large body of linear
system theory is then applicable, including Bode and Nyquist plots, root-
locus techniques, sensitivity relations, and Nyquist stability criteria.
However, the accuracy deteriorates as the frequency approaches the switch-
ing frequency, and there is a special case when the test frequency is one
half the switching frequency. Consideration of this special case illumin-
ates the possible instability at the second subharmonic of the switching

frequency. A more complex and less versatile quasi-linear technique employs



the z-transform method of sampled-data systems. The method is also based
upon the assumption of a single-frequency test sinusoid, and becomes con-
siderably more complicated when the switching frequency is not constant.
Also, this method gives information only at the sampling instants. Never-
theless, even though system response is incompletely known, system stabil-
ity may in some cases be more completely investigated than by the DF method.

The time-domain discrete model treats the control circuit during the
on time and off time intervals as piecewise linear. Within each piecewise
region, differential or algebraic équations can be formulated and their
boundry conditions matched during the transitions between the on time and
the off time: Solutions showing the control-system behavior can then be
obtained, either explictly or graphically, and the nature of the solutions
examined to determine whether a limit cycle exists and what will be the
transient response. The time-domain analysis possesses the advantages of
more accuracy and large nonlinearity accommodation. However, due to perhaps
power processing designer's preoccupation with the frequency-oriented perform-
ance characteristics (e.g., output impedance, etc.,), the time-domain analysis
has largely been limited to first and second-order system with a bistable
hysteretic trigger.

Computer simulation is.powerful in verifying results obtained through
other analytical means. Both analog ad digital computers are capable of
performing the power processing equipment simulation, with the digital com-
puter enjoying a greater accessibility and easier technology transmittal.

11.9.3 A Summary of Merits and'Disadvantages of Various Method Analysis

The merits and disadvantages of the methods listed previousily are sum-
marized on Table 13. This table will serve as the guidelines in selecting
the analysis approaches during phase B of the program.
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Table 13

A Summary of Merits and Disadvantages for Various Methods of Analysis

Categories Methods Merits Disadvantages Remarks
Samples Data Does not limit to Hore involved Has applied to two-loop
Z-Transform second-arder systems. when the converter switch- control analysis, with
. ing freEuency is not con- favorable results.
stant.
sign Engin ' .
De .g. ngineer ‘s Based on assumption of
familiarity with ingle-frequen inusoid
linear system makes single-frequency sinusoid.
these techniques
F Describing easier to communi- System responses to inputs Certain naonlinearities
requency . . R L
Domain Function cate. other than sinusoidal are (e.g., hysteresis) descrih

Lineariza-
tion

Low-Frequency
Characterization

Analytical results
obtained are directly
applicable for design
obtimization.

not readily evaluated.

Limited to only one nonlin-
earity,

ing function are magnitude
and frequency sensitive,
giving a family of Bode
Plots rather than a single
frequency response curve.

Based on assumption of
single-frequency sinusoid,

Accuracy is satisfactory
for signal frequencies
less than 10% of switch-
ing freguency.

Hathematical

Exact solution.

Less familiarity on the

One approach used success-

i - i in= fully i
] . Analysis Does not |imit to part of the design engin Fully in spacecraft control
Time Domain eers is applicable.
N second-order system.
Analysis
Graph|§al Can §ccomTodate large A?plicaticns to systems Application to power proc-
Analysis nonlinearity. higher than second arder r lysis has been
(Phase Plane) become very much involved gesor analy b
Y : limited to chopper using
Cannot take sinusoidal hysteresis control,
forcing function,
Digital fasy to use. May require long calcula- There are programs that can
S tion time than analog take actwal circuit topolo-
Great accessibility. . . . . gy and Fortran input routine.
Insight gained is not sasily
related to causes if applied
Computer without a mathematical
Simulation analysis.
: Analog Shorter calculation time Need to write control=sys Has applied to two-loop con-

than digital computer.

tem differential equation.

" trol analysis, with favorable

results.




11.10 AVAILABLE CUMPUTER PROGRAMS FOR SYSTEM/EOUIPMENT DESIGN,
ANALYSIS, ANU OPTIMLIZATIUN

Yarious computer programs are available for the analysis and
simulation of electronic circuits and are briefly discussed in the
following section.

11.10.7 TESS

The TRW Engineering System Simulator (TESS) is a digital computer
program developed to perform large scale, nonlinear circuit and system
analysis and design, and is a modification of the SCEPTRE program. A
new program from IBM, CSM/0/P, privides the same basic capability. The TESS
performs transient, DC and AC analysis through the use of three sub-
programs (TESS-TR, TESS-DC and TES§-AC). A system analysis capability
is provided by the ability to input problems in terms of first order
differential equations and state space formulation. The program is
therefore applicable to electronic circuits as well as any system that
can be represented by a set of coupled 1inear or nonlinear differential
equations.

The progranm has the capability to analyze networks_containing up
to 601 nodes and 600 elements. Extensive use of "state-of-the-art"
programming techniques,'sophisficated list-processing technigues and
sparse matrix schemes allow rapid analysis of large problems with min-
imum memory core usage. The program has a flexible user oriented input |
language common to all three subprograms and nearly identical to the
input language of SCEPTRE (System for Circuit Evaluation and Prediction
of Transient Radiation Effects). This general input language allows the
use of equations, tabular data, defined parameters and FORTRAN function
subroutines to define problems in both circuit and system analysis.

11.10.2 ECAP

The Electronic Circuit Ana]ysis-Proqram (ECAP) is an intearated system o
programs designed to aid the electrical engineer in the design and analysis
of electronic circuits. This system of programs can produce DC, AC, and/or
transient analysis of electrical networks from a description of the connec-
tions of the network (the circuit topology}, a list of corresponding cir-
cuit element values, a selection of the type of analysis desired, a de-
scription of the circuit excitation, and a 1ist of the output desired.
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ECAP recognizes a set of standard electrical circuit elements --
resistors, capacitors, inductors, independent current and voltage
sources, mutual inductances, switches, and dependent current sources.
Any electrical network that can be constructed from any or all of the
different elements in the set can be analyzed by ECAP. There is almost
no 1imit to the number of ways that the circuit elements can be arranged
in the network. '

The set of standard circuit elements does not include electronic
components, but in many cases, these components are easily simulated
by means of equivalent circuits constructed of standard elements. A
number of examples are included in the user's manual that involve the
use of equivalent circuits.

ECAP can handle electrical networks that contain as many as 50 nodes
(not including ground nodes) and 200 branches.

ECAP is very simple to use. The engineer needs no knowledge of the
internal construction of the program, and no previous computer experience
is required. It is necessary, howevér, that the user be acquainted with
the methods of communication with ECAP. These include (a) the technique
of describing a circuit to the pkogram, (b) the specification of the type
of analysis desired, and (c) the interpretation of the results.

11.10.3 1/CAP

I/CAP, a completely revised and augmented interactive, conversational
version of the well known ECAP Program, was designed by engineers, for
engineers, to help them solve their circuit analysis problems via a power-
ful time-sharing computer, and to provide them with many features not found
in most other T/S circuit analysis programs.

The prime object of this‘géneral purpose, interactive Computer-Aided
Design program should be to help the user solve his particular problem,
in the fastest, most convenient, and cost-effective manner.
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11,10.4 _csM/o/P

Continuous Systems Modeling & Optimizing Program (CSM/0/P} is an
augmented and improved version of CSMP*, designed for on-line, inter-
active, transient and'AC simulation of continuous systems and processes.
The engineer or scientist uses a simple, yet versatile application-
oriented input language for simu]atihg and evaluating systems which can
be expressed either by an analog block diagram, or by a set of ordinary,
or nonlinear, differential equations.

A large complement of functional elements is provided, and many
time-sharing features are used to advantage to achieve operational flex-
ibility for on-line experimentation. Program features include:

*Conversation, discipline oriented input language
*Predictor-corrector, or central-Euler integrations
*Expanded element block and functions capabilities
*AC analysis,. frequency and phase response plots
*Graphical output, and selective output control
*On-line file handling and editing capabiiity

*Response optimization of linearized systems by para-
meter jteration under program control

*Printout of the 'A' matrix, and eigenvalues

The user describes his problem by enteking block parameter and inter-
connection data, simulating a standard analog computer 'patch-board'
connections and gain settings. 75 blocks, and 43 different block types
are available, with provisions for additional user defined blocks. More-
over, each block has extended capabilities of operation, so that systems
which would require more than 125 blocks with other programs, can easily
be handled with CSM/0/P. Realistic system simulations can be obtained by
including blocks which simulate: noise, backlash, flip-flops, etc. One
to twenty transient response plots can be stored on disc files, and re-
trieved for later use. |

Furthermore, the AC response, the 'A' matrix, and the eigenvalues,
can be obtained for Tinear, or 'linearized' systems. Thus, the operation-
al of mechanical, electrical, and hydraulic systems, can be fully simulated
and analyzed by this program. '

*CSMP - Continuous System Modeling Program
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Frequency response optimization of a lTinearized system can be
achieved. CSM/0/P allows the user to change the values of his system's
parameters, under program control, so as to realize a response closer
to the desired response specified. -This optimization is accomplished
by varying only the user-selected parameters, so as to maximize a merit
function. A spiral, least-squares algorithm is used to minimize the
difference between the desired frequency response, and the system's
response, over a specified frequency interval.

11.10.5 FORTRAM IV and EASIC

These two programs are available for the user with programming ex-
perience. A number of library programs are available for solving many
intricate mathematical and scientific problems.

11.10.6 Analoa Computer

An analog computer COMCOR Ci-5000 is available for analog simulation
of electronic circuits or functional system blocks. The COMCOR Ci-5000
is a large-scale all solid-state gerieral-purpose computing system which
consists of an analog section, a digital control section and a patchable
Jogic section. The operating flexibility of the system permits accurate,
reliable, and efficient operation with a choice of many configurations
and peripheral input/output devices.

11.10.7  SUMT

The computer program implementing the Sequential Unconstrained Min-
imization Technique solves nonlinear simultaneous equations to determine
geither a minimum or maximum value. This is a research tool developed by
Research Analysis Corporation, MclLean Virginia, implementing many of
the computational techniques for solving nonlinear programming problems
set forth in Chapter 8 of the book, "Nonlinear Programming: Sequential
Unconstrained Minimization Techn%ques," by Fiacco and McCormick. The
mixed interior-exterior penalty function is used and any of several
algorithms can be specified for minimizing the penalty function to accel-
erate the calculation procedure.



The program is modular in structure to facilitate changes in
logic, options, problems and input-output. A1l of the subroutines
are written in FORTRAN IV language, with minor modifications the
program can be run on any sufficiently large computer with a FORTRAN

compiler.
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11.11 A DETAILED POMWER PROCESSING EOUIPMENT REOUIREMENT LIST

An optimum power processor ecuipment desian depends on the correct
identification of all detailed specification requirements. These
requirements generate desian interactions between the internal nower
processor functions and determine desian constraints for each function.
Hith the advent of extremenely hich power equipment for future power
nrocessina systems, realistic specification requirements are vital in
achieving minimum desion venalties and maximum equipment compatibility.

Table 14 1ists the detailed power processing equipment snecifications.
Each specification nrovides desion constraints on the nower processing
equipment and its internal functions.

Based on these specifications, the power processing equipment desioner
can proceed to design the equinment to meet the correct interfaces he-
tween power source, power processor and load equipment.



TABLE 14

REEUIREMENT LIST

Input Source Voltage

a. Static - min/max value

b. Transient - volt-time profile

¢. Cyclic - magnitude and frequency range
d. Impedance - magnitude vs. frequency

Qutput Current Demanded by Load

a. Static-min/max value
b. Transient - ampere vs. time profile
c. Cyclic - magnitude and frequency range

Impedance Characteristic of the Load

a. Resistive, inductive, and capacitive

b. Positive impedance, and negative impedance
such as TWT

Qutput Power Quality of Converter

Output voltage and current rating
Power and control circuit input-output isolation
Regulation - line, load and temperature

(=T o B = B

Ripple - due to Toad, internal noise, and input
voltage variation

e. Transient response due to step change in input
line voltage or output Toad current

f. Output impedance - magnitude vs. frequency
g. Number of outputs
h. Efficiency
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5. Protection - Control

Load short circuit

Output filter capacitor discharge energy control
Sequencing of outputs

Input, over and under voltage protection

Qutput, over and under voltage protection
ON-OFF control

Special commands, ground or automatic

S & —h M O 0 T o

Starting transient (input current vs. time)

Internal voltage and current monitors for
performance monitoring

o
-

6. Electromagnetic Interference

AC reflected current versus frequency
AC input current versus frequency
Power source impedance versus frequency

Transient input voltage during startup and fault
operation

e. Transient reflected current during startup and
fault operation

0 0 T oo

7. Mechanical

a. Weight

b. Size of basepiate

¢. Volume

d. Vibration - shack

e. Location of connectors
8. Thermal

Ambient temperature range
Methods of heat transfer

Natural convection

Forced air

Radiation

Conduction into spacecraft structure
Active cooling loop
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9.

Reliability

a.

o @ —h

el ¢
.

Mean time between failures

Component peak current, voltage or power stress
during steady-state, startup and fault operation

Part derating
Maximum component temperature
Method of redundancy

Parallel operation
Standby operation
Quad power components
Majority voting

Methods of fault clearing
Single point failures
Mission life

Duty cycles
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11.12 DETAILED DEFINITION OF CLASSIFICATION OF POWER PROCESSING

FUNCTIONS

Each power processing equipment is constructed of a Timited
number of basic functional building blocks. These blocks can be
grouped into power level functions and signal level functions. It
is expected that a lérge portion of the future study will be spent
on power level functions where significant system improvements can
be obtained in weight and losses through the use of optimization
techniques. The signal level functions, usually common to all
classes of power processing equipment, are studied for their effect
on the power level functions and the power processor reliability
and performances.

Table 15 lists the basic power and signal functions used in
power processing equipment.
Table 16 lists the basic definition for the power functions

used in the power processing equipment.

Table 17 1lists the different classifications for each basic
power function. Mathematical models have been generated to de-
termine actual waveforms and interaction between components in
each design.

Table 18 1ists the definition for the signal functions.



TABLE 15. POWER PROCESSOR

CIRCUIT FUNCTIONS

POWER SIGNAL
Basic Basic
Power Modulation (7 classes) Sensor
Inversion {5 classes) a. Voltage
T £ ti b. Current
ransformation c. Frequency

Rectification (3 classes) Re ferences
Passive Filtering (11 classes) a. Voltage
RFI Filtering b. Current

Transmission
a. Static
b. Rotary

Power Control & Fault Isolation

c¢. Frequency
Analog Signal Processor

a. Voltage Gain
b. Current Gain

Digital Signal Processor
Power Switch Interface Driver
Input/Output Ground Isolator
Digital Logic Function

a. OR Gate
b. AND Gate
c. Flip-flop
d. Multivibrator
e. Schmitt Trigger
f. Counters
Relay Driver
Time Delay
Telemetry
a. Voltage

b. Current
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TABLE 16. POWER FUNCTION DEFINITIONS

Power Modulation

a. Switching: The process of controlling power from a source
such that the output is maintained within desired 1imits.
The control is accomplished by varying the ON/OFF time
ratio of a power switch either by a pulsewidth modulation
(PWM) or by pulse rate modulation (PRM}. Either process,
herein, is referred to as pulse modulation (PM).

b. Dissipative: The process of contro]]ing power from a source
such that the output is maintained within desired limits.
The control involves dissipation of excess energy.

Inversion

The process of converting dc voltage to ac voltage or dc current
to ac current.

Transformation

The process of converting ac voltage from one level to another,
either step-up or step-down, and working as an isolation trans-
former or as an auto-transformer.

Rectification

The process of converting ac voltage to an unfiltered dc voitage.

Passive and RFI Filtering

The process of suppressing or minimizing frequency components in
power lines with passive components. The two types considered
in this study are the dc filter (those used in either dc power
lines, input or output) and the ac type (used primarily for
harmonic filtering in ac output power lines).

Transmission

The transmission of power from the power generation subsystem to
other subsystems as a function of spacecraft configuration,

Power Control and Fault Protection

The process of distribution and switching of power, including
failure detection, isolation, current limiting, and voltage
Timiting.

!




TABLE 17, POWER FUNCTION CLASSES

Power Modulation

1. Switching
a. PWM - Inversion
b. PWM - Rectification
¢. PM - Buck
d. PM - Boost
e. PM - Buck-Boost
2. Dissipative
a. Series
b. Shunt
Inversion
1. Squarewave
a. Resistive Load
b. Rectifier-LC Filter Load
¢. Rectifier-C Filter Load
2. Squarewave with Fixed Dwell
3. Sinewave

Rectification

Squarewave
PWM - Squarewave
Sinewave
Passive Filtering
1. DC Filters
a. LC - No ac requirement
b. LC - High ac current
¢. LC - High ac voltage
d. LC - High ac voltage and current
e. LC - high ac voltage with transformation
f. LC -
g. C - No ac requirement
h. C - High ac current - Tow frequency
i. € - High ac current - high frequency
2. AC Filters

a. LC - High ac voTltage and current

b. € - High ac current

high ac voltage & current with transformation
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TABLE 18, SIGNAL FUNCTION DEFINITIONS

Sensor

The sensor monitors the output parameters including voltage, current
or frequency, and converts the signal so that it is compatible with
the remainder of the control electronics.

Reference

In all feedback control systems, a reference or standard must be
provided which has its own required accuracy to maintain the power
conditioner within its specification requirements.

Analog Signal Processor

An active network for obtaining a controlled voltage (or current)
gain versus frequency characteristic.

Digital Signal Processor

This is the brain of all switching requlating systems, which controls
the ON/OFF of the power switch. Basically, it is an active network
for converting variable analog signal levels to a digital signal
having either variable pulse width or variable pulse frequency to
drive the switching power transistor.

Power Switch Interface Driver

The power switch in most high power applications requires interface
circuitry to provide the correct current level, voitage level shift
and impedance matching between the digital signal processor and the
power switch.

Input/Output Ground Isolation

In most power conditioning there is a need for input/output ground
isolation. This device passes a digital type signal from the output
sensing to the main power switch controller to achieve the control-
circuit input/output isolation. This is in addition to the power-
circuit isolation, which is achieved by the proper choice of power
modulation and inversion scheme.

Digital Logic Functions

These are standard functions used in processing digital signals to
provide the correct operation of the power conditioning equipment.




11,13  POWER PROCESSING EQUIPMENT FUNCTIONAL BLOCK DIAGRAMS

Figures 22 through 27 illustrate the power processing
equipment used in dc power distribution systems, based on the
standard power processing equipment functions.

Figures 28 through 30 illustrate the power processing
equipment used in ac power distribution systems,

Figure 31 illustrates the block diagram for the source/
load power distribution unit.
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POWER FUNCTIONS

Power
Modulator

SIGNAL FUNCTIONS

DC LINE REGULATOR (DISSIPATIVE) FUNCTIONAL BLOCK DIAGRAM

Figure 22

Qutput
Filter

out

Analog
Signal
Processor
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POWER FUNCTION

Input Power Qutput
Filter ' Modulation Filter

Frequency
Reference

Digital Analog
Signal Signal

Processor Processor

Under/ : l
Overvoltage

Sensor

Signal Function

ON/OFF Command

DC LINE REGULATOR (SWITCHING) FUNCTIONAL BLOCK DIAGRAM
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POWER FUNCTIONS

Power Output
Modulation Filter

Inversion Transfarmation Rectification Filtering
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Digital Analag
Signal Signal
Processar Processor

— e vy vl —

|
Analog
— Input/Qutput
! - Ground Signal
Isolation Processor

Frequency
Reference

SIGNAL FUNCTIORS

DC-DC CONVERTER (PREREGULATOR/SQUAREWAVE INYERTER)
Figure 24
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Input
Filter

POWER FUNCTIONS

Power Transformation

Modulation
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Qutput
Filter

Digital Input/Output
Signal Ground

Processor Isolation

STGNAL FUNCTIONS

Analog
Signal
Processor

DC-DC CONVERTER (PULSEWIDTH MODULATED INVERTER)

Figure 25
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POWER FUNCTION

DC

Output
Filter

Power
Modulator

Input
Filter

Digital
Signal
Processor

Analog
Signal
Processor

Frequency

Reference

SIGNAL FUNCTION

DC TO AC INVERTER (STEP WAVE FORM)} FUNCTIONAL BLOCK DIAGRAM

Figure 26
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POWER FUNCTIONS

DC Power
Modulator

Inversion

Digital .
Signal
Processor

Analog
Signal
Processor

Voltage
Freguency
Reference

SIGNAL FUNCTION

DC TO AC INVERTER (HIGH FREQUENCY PULSEWIDTH MODULATION) FUNCTIONAL BLOCK DIAGRAM
Figure 27
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POWER FUNCTIONS

Qutput
Filter

Transformation Rectification

NO SIGNAL FUNCTIONS

AC-DC CONVERTER {UNREGULATED)
Figure 28
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POWER FUNCTIONS

Power '
Modulation

Output
Filtering

Transformation

Signal
Processor

SIGNAL FUNCTIONS

AC-DC CONVERTER (REGULATED) (LOW FREQUENCY OPERATION)
Figure 29
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AC

POWER FUNCTION

Qutput
Filter

Power
Modulation -

Rectification

Rectification Transformation
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Analog
Signal
Processor

Input/Output
Ground
Isolation

Digital
Signal
Processor

SIGNAL FUNCTION

AC-DC CONVERTER (HIGH FREQUENCY OPERATION) - REGULATED
Figure 30




POWER FUNCTION
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Command Input

SOURCE/LOAD POWER DISTRIBUTION UNIT
Fiqure 31

691



170

11.14 A NUMERICAL EXAMPLE ON THE INTERDEPENDENCE AMONG POWER
PROCESSING FUNCTIONS

In conducting the PPE tradeoff study, the designer becomes keenly
aware of the interdependence existing among the PPE functional blocks.
Invariably, he found that the impact of selecting a design approach for
the implementation of a given functional block is frequently felt by all
other PPE functional blocks. Unfortunately, there is a dearth of design
information leading to an effective assessment of the interdependence.

As a result, the full impact of the interdependence can be made apparent
only after the completion of rather laborious quantitative studies.
Pressed by schedule and cost, this interdependence is often overlooked

or hastily defined, thus incurring PPE weight and loss penalties.

To illustrate this interdependence, the basic power circuit of a
buck-boost switching regulator is shown in Figure 32.. Design variations
for the'power modulation and transformation block will be shown to impact
directly on the input and output passive filtering blocks, thereby exten-
ding its influence to the overall PPE.

Depending on the load variation, the MMF in the inductor transformer
T in Figure 32 can be designed to exhibit one of the following three pat-
terns: (1) the MMF is never zero, i.e., the inductor is designed to be
high above critical inductance for all loads, (2) A dwell at zero MMF always
exists during a portion of the power-switch off time, i.e., the inductor
is designed to be below critical inductance for all Toads, and (3) the non-
zero MMF of case (1) exists at heavy load, and a zero MMF of case (2) at
lighter loads, i.e., the critical inductance occurs at an intermediate load.

What design should be selected depends on detailed tradeoffs involving
the combined efficiency and weight of the input filter, the power transformer,
the semiconductors, and the output filter. The first alternative above
would yield maximum inductor weight and copper losses, but would produce
less weights in the input/output filters and less core loss in the inductor
transformer. The second alternative is the opposite, while the third al-
ternative provides an intermediate compromise. A detailed design calcula-
tion was performed using each of the three designs described. The designs
are based on identical input/output requirements specified below. To meet
all these requirements, the design data for the circuit of Figure 3.5 are
summarized in Table 19. '



Input Voltage: 20V to 40V

Qutput Voltage: 28V regulated

Output Power- 40 watts -

Frequency: 25kHz

Qutput Ripple: One percent peak-to-peak
Source - Current: Meet MIL-STD-461A, Notice 3
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Figure 32 Buck-Boost Switching Regulator

TABLE 19

Weight and Loss Analysis Demonstrating the Interdependence of Functional Blocks

Power Modulation
§

input Filter Transformation Dutput Filter Total

Design  Design Design Design Design Design Design Design Design Design  Desi Desi
No. 1 No. 2 No. 3 No. 1 No. 2 | Na. 3 No. 1 Ne. 2 HNo. 3 No. 1 No. %n No. %1’1

Component

Weight 52 108 82 275 BS 125 40 [:1i} 40 397 277 243
(Grams)
Power Loss
{Watts) 0.30 0.31 0.30 4.07 3.50 3.15 0.1 a.1 0.1 4 47 3.91 3,55
Minimum
Weight
and
Loss

171



172

This example thus adequately demonstrates the functional inter-
dependence. By designing the "Power Modulation and Transformation"
block with all three different approaches, the impact of each design on
all functional blocks is quantitatively revealed. The optimum PPE de-
sign is thus identified to be Design No. 3, which yields minimum weight
and minimum losses.

The analysis and modeling techniques to be developed in this program
can be most effective and meaningful only if they provide a means of
achieving the illustrated optimization among all interdependent functions.
This is considered essential in developing useful design, analysis, and
modeling techniques, without which the utility of the techniques developed
would be extended only to optimization at the functional level, and would
have no validity in arriving at an optimum PPE design.

Another functional block interdependence of different nature concerns
the overall PPE integration. Most of switching-regulated PPE are essen-
tially negative-impedance devices, which can contribute to the formation
of a low-frequency limit cycle when it is integrated into a low damping,
second-order energy storage device.

The paper presented in Reference [36] uses an input filter to represent
this energy-storage device. Conditions of a stable 1imit cycle are derived
using the method of singularity, and the analytical results have been ex-
perimentally substantiated.



11.15 AN EXAMPLE OF CLOSED-FORM OPTIMUM-WEIGHT MAGNETICS DESIGN
EQUATION -

Introduction

" The design of a toroid inductor is normally achieved rather routinely.
Based on information concerning the inductance L needed, the peak current
Ip through it, and the saturation flux density BS of the core material,
the designer starts with a core having area A, mean length z, window area
Aw, and permeability u. The number df turns N needed to make inductance
L is then calculated.

At this point two comparisons are made: (1) uNI /z = qu is compared
to BS to see if the magnetic capability is fully utilized, and {2) N is
multiplied by AC (i.e., AC being the sectional area of copper per each turn
of conductor as required to handle the winding current with peak value Ip)
to see if the window area Aw is sufficient to accommodate the windings,
from which the relative value of Aw with respect to NAC/Fw = Ax’ where Fw
is the estimated winding factor, is determined. Six possibilities would
emerge from these comparisons, namely;

(A) qu>Bs, AX>AW’ (B) pHp>BS, Ax<Aw, (C) qu<BS, Ax>Aw,

(D) qu<BS A (E) H B Ax>Aw’ and (F) Hp:BS, and Ax:Aw'
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Cases (A), (B), and (C) point to either core saturation or inability
to accommodate all windings within the given window area, indicating:
the need for a larger core. Case (D) represents a surplus in the
magnetic capability of the core; a higher -i and smaller core may be
in order. As for case {E), the fact that the window is lefe unfilled
is synonymous tc the need for a lower -u and smaller core for space
utilization. Only case (F) represents an inductor design utilizing
fully the electromagnetic capability provided by the core-winding com-
bination.

It is highly unlikely, even for an experienced designer, to choose
the right core so that case (F) is achieved in the first try. More often
than not, many passes will be taken before case (F) can be arrived at.
Furthermore, there normally exists a number of designs, all of which can
satisfy conditions specified in case (F). However, only one of them would
provide the lightest combined c¢ore and wire copper weight. The minimum
inductor weight equations will result in different inductor designs for
different conductor sizes selected.

The objective of this discussion is to determine, for a given L, Bs’
and AC, what particular set of A, N. z, and u will give the combination
of least iron and copper weight.

Nomenclatures and Assumptions

The following symbols are used in this section.

A:  Core sectional area in meter?

AC: Copper-conductor area per turn in meter?
A, Window area of toroid core in meter?

BS: Saturation flux density of the core material in weber/m2
DC: Specific gravity of the copper conductor in kg/m3

D, Specific gravity of the magnetic core in kg/m?

Fw: Winding factor

FC: The ratio of mean length per turn of copper conductor to the

circumference of the core section, i.e., the pitch factor

Ip: Peak current in ampere in the inductor winding

L: Inductance in Henry's

N:  Number of turns

Ui Permeability of the core material in MKS unit, and

z:  Mean length of the circular magnetic path in meters.



While the method presented herein is applicable to any core section
configuration, a square toroid core section is assumed for convenience.
Thus, for a core cross-sectional area A, the circumference of the core
section is 4/A. The mean length per turn of copper conductor is, there-
fore, 4FCJ§.

Problem Formulation

Using the aforementioned symbols, two basic equations can be
written as: '

2
uNeA L (M
z
and uNIp _
z By - (2)
Combining these two equations gives:
Llp _
NA-B—E'-O (3)
S
The window area is
z VA

Ay = T2 = T Gy - =)

where r is the inside radius of the core. Multiplying Aw by the winding
factor, Fw’ gives the total copper area. Assuming that the window is
filled, then NAC/Fw = Aw gives

.N.EE. = (E_. [A_)Z
an 2n - 2

A
v.ﬁ.%_./ﬁ_
W

As noted before, the mean length per turn of the copper conductor is

or

A
7

=0 (4)

re N
=

4Fcfﬁl The total copper and iron weight, wt, is, thus;

- 5
W, 4FCACDCN/AT + DAz (5)
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The mathematical problem of minimizing inductor weight is now
defined as the following: Find the values for A, N, and z to cause a
minimum wt in equationﬁi)using equations (3) and (4) as constraints.
Also find u from equation@ ¥or this particular set of A, N, and z.

Analytical Solutions Using LaGrange Muitipliers

A necessary condition for f (x, y, z) to have a minimum when Xx,
y, z, are subjected to the constraints of

P(x,y,z) = 0 and q(x,y,z) =0

may be found by adding to these two equations the conditions that the
function:

h(x,y,z)} = £(X,¥,2z) = aP(X,y,2) - eq(x,y,2)

has a minimum, where a and g are as LaGrange Multipliers. Specifically,

in addition to p (x,y,z) = 0 and q (x,y,z) = 0, one has the following
three more equations:

.g.'b..::o 9.h_=

ah _
aX ,Cl,y O,E_D

These five equations can be used to solve the five unknowns x, y, z,
a and B.

Relating the foregoing discussion to the present problem, f(x,y,z)

corresponds to eq. (5) , p(x,y.z) and q(x,y,z) are equivalent to eqs.
{3) and (4) , thus;

f(x,y,2) = 4F D A xy2 + Dixzz, y =M, x=+A

P(x,y,z) = x2y? --§J1== 0 (6)
s

= - - Z_ i: .
q(x,y,2) = YA |TF -y = 3=+ 5 =0 (7)

Therefore,

- LI A
= 2 25 . 2y2 - L -
h{x,y,z) 4F DA, xy? + Dyx?z a(x2y E-;P—) B(VIIFW ¥y

A TN
=

+
ra|
S



Cﬁh= 2 - 2_&: . ’ (8}
X 4FCACDCy + 2Dile 2oxy*c . 5 0

_ o
ah _ . 2y - g/ S = (9)
ay 8FCACDny 2aX%y B\/IIFW 0 |
ah _ B - 10
aZ D'ixz + 20 0 (10)

So1ving eqs. (6) to (10) for the non-trivial solutions, one obtains:

' LI A R ' -
LI A _
N= 3 (2 )2 g (12)
A_ B
c s
LI A ‘ 1/2
- c \1/4 ,-1/2 | S
z=2/31 (—FS%F;) (S +6 ) (]3)
B A A 1/2 _
4= 2L (T§)5/4(_%_ )3/4 -1/8g(51/2 , S 17 (14)
3 'p Ty 6
12F F D
s = (1+—SMe )2 g

Equations (11) to (14) illustrate the particular set of A, N, z, and n
that will produce the minimum combined copper and iron weight for an
inductor with inductance L, peak winding current Ip, winding cross-sectional
area AC, saturation flux density BS, winding factor Fw’ pitch factor Fc’
specific gravities DC for copper and Di for the core. Here, A and z are

in meters, and u in Weber/Amp-turn-meter. To convert u into Gauss/oersted,
eq. (14)  would have to be divided by 4u x 10~7.

As one would expect from a problem of this complex nature, the equations
obtained are not as simple as we like them to be. However, they are certainly
not incompatible with actual slide-rule evaluations. Furthermore, the equations
are readily adaptable for computer processing. In reality, of course, it is
rather unlikely that a commercially avajlable core would exist to match pre-
cisely those characteristics defined in egs. (11) to (14) . and that the
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mismatch would probably be most prominent for permeability u, where

a few discrete ones can be chosen commercially. Nevertheless, these
equations do provide a guideline in designing an optimum weight in-
ductor. The selective process is accomplished without time-consuming
iterations, yet it results in the minimum combined iron and copper
weight for the required inductor.

Minimum Inductor Weight

Using equations (5), (11), (i2), and (13),
the minimum W, in kilograms can be shown to be

20, LIA _ 1 D, 2
- & (G RO¥ES T [erF g (s3] (18)
) s w ev Y

(Nt)Min
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11.16 AN EXAMPLE OF DERIVING DESIGN EQUATIONS FOR A POWER PROCESSING
FUNCTION

The filter schematic is shown in Figure 33. The design pro-
cedures starts with the derivation of its transfer function:

I, (s) 1+SC]R] 1
G\S) = i (5) l: ( )

¢ (1+SC1R]) + (145 chzi] (1+SC]RI+S L]C]) - (__) (1+SC 1)
1
Three frequencies of particular interest are: (1) the first-stage
filter resonant frequency f], (2) the second-stage resonant frequency f2'
and (3} the switching frequency F of the converter.

(1) At f] where S° L C] = -1, the peaking P1 can be derived from eq. (1):

1
2 —
_ . 1+0D 2 (2)
Py = | 6(ganfy) Y c fZT 2
@ -2 -]
C T, T\%,
1 ] 2
Here, D is the damping factor of the first stage, i.e.,
- .
1
Ry =D | =—
(2} At f, where 52 L, C, = -1, the peaking P, can be derived from eq. (1):
P, = | G(j2rf2) ‘ = LZ/L] (4)

The resonance of the low-damping second-stage is thus effectively clamped
to a value corresponding to LEIL] by the presence of the first stage. Since
L2 < L.I is normally observed, peaking of P2 beyond O-db is impossible.

(3) At F where F>>f; and F>>f,, it can be shown from eq. (1) that the
attenuation G (s) = A<<l becomes

A=

6( j2rF) | . ‘ (5)

) O 6
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Solving for approximate (F/f]) from (5) gives

| 1 0(2) (6)
IO

Based on these design criteria and the transfer functions, a design

L
—

—

—h{“n

procedure can be outlined as the following
(1) Calculating the maximum alternating current in C2 based on
given line and load conditions.

(2) Based on the calculated current, choose suitable capacitors
for 62 so that the maximum steady-state ripple voltage across
C2 is within thg allowance of the design criteria.

(3) Choose the proper ratio for CZ/CI and L2/L‘. As stated earlier,
the ratio L2/L1 should be less than unity to aviod the second-
stage peaking beyond 0-db. (Recommended value is in the range
between 1/2 to 1/4). Furthermore, in order to mzet the 3db
peaking requirement, L] Cl should be at least more than four
times larger than L, C2 in order to aviod the closeness of f2
to f]. {Recommended value is between three and six times).

2

(4) Solving D° in eq. (2) gives

2 2
7 L 7
P, [1 - (Cy/ey) (14 2 )] -1
1

In conjunction with the chosen C2/C1 and L2/L], eq. {7) can be used to
calculate the damping factor D in order to 1imit_the resonant peaking
to P] as specified in the design criteria.

(5) With a required attenuation A at a given switching frequency F,
- eq. {6) can be used to calculate f].
(6) Determine L from
- ]
L, = —A 0
h .
bt
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(7) Obtain L, from the chosen ratio Lo/L,.

(8) From eq. (3) calculate RI.

(9) Use the magnetics design equations presented in Appendix 11.15 to
estimate the inductor weight. The capacitor weights are spe-
cified by the manufacturers. From these results, the total
fiiter component weight is obtained.

i 2
o Naaa¥ 222 , To Swilching
f : 1 Regulator
, A ¢,
®in e
R
G —y

Figure 33 A Two-Stage Input Filter
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11.17 AN EXAMPLE OF POWER PROCESSING COMPONENT STRESSES AS DETERMINED
FROM FUNCTIONAL DESIGN EQUATION

An duportant aspect of irput filter casign buck requiator, iz buci-boost requiator and
is the delarwination of the ras current pating the boost rogulaicr. The yms current in the
of the filter cutout canacitor. This c2pac- filter capaciter € is derivad, in the follewing
itor supplies pulse current in suitchd ng paragranhs, for 2ach reguiator type, shouing

the dependence on line voitage, load and circuit

regulator axalicstions. Three commonly used parameters.

regulatare, with assaciated 1nnut filters, ere
illustrated in Figs 32 {4}, (B) and (C); the
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| S | ST RS | S,
(ui V,=V -V Eo) Tur

rms

Buck Requlator

From Fiq, 34 [A), volt-second balance on the
output irducuor, L2, requires that:

17V , = (EHgHL) Togr )
By assuming a sufficiently large value of L2
and a large load demand, an essentially rect-
augulzr current pulse, shown in Figurz 34
flows through 4. The average valus of this
current cver a Tull ¢ycle is [,. The average
toad current, [, which is also the aralitude
at the center of the current pulse, cen be
expressed 45.

T
I =1 T—— (2)

The alternating current through C is repre-
sentzd by the two shaded areas,
Its rms valua is

(" T
-

. e 1 ‘on _ 2 2

Yems © T[f “0 Ia) dt+ j Ia dt]

0 T

on

o1, Y [ - (3,1“—)} (3)

0 1

N n
The maximum ¥ms Eurrent occurs for —%— = Q.5
[a)

and Fc anval ta
INT L 2Ral e s

Neglecting ¥, Vo' Vp and V¥, in Figure 2(A),
29N = a5 securs when Ei = ZEO. For a more

1
accurate caiculation, the substitution of (1)

in {3} gives:

1

. o VY-
T ET Y ‘ir(EowaDHEi ¥yVgipeEg) (4)

The alternating current through C, as repre-
sented by the shadad areas of Fig. 2t (E),
is:

T T, -
- xp\l ¥ D=1

P (E. -V, -V =V, N

0 -‘ j 1 0 "20° s (7)
¥ }

4" lE°+VD+V25) My

The maximum value of irms thus occurs at

Ei = 2 (VI+V°+Vzp). Nermally, this partic-
ular value of E. §s much below the minimum
jnput voltage. For higher Ei' within the
pperating rance, irws decreases with increas-
ing input voltage, ;.

Boost Reculators

For the boost regulator shown s

the alternating current component in filter
capacitor C is as depicted in Fig, EEATEN
where:

E,-V,-V,-V
It it P

sl -1, Ton (8)
E VY +Y,E,

s 2 V1 c

L2 off

For systems operating with, respectively,
constant Ton‘ constant EiTon‘ constant Tfo

and constant T, the corresponding irms valuas

are given by:
; . Ei-vl-vz-vg . (9)
s 252 . O°

Buck-Boost Pegulator. 1rms = 273 L2 iTon {10)
Valt-second balance on the two-winding
induster raguires that: . ED+V°+‘.’]+V2-E1 . a)
] 2 o—
c - rms . off :
“sTon(°i'Vl‘Vq‘V2p) = “pToff(Eo+Vn+V2s) (5) 2v3 12
, Ey¥ym¥y=Vn  E #V VoV -,
As in the previous case, a sufficiently large. Toms = ! _} 20 GE EV lv 21 1 (12}
value of L2 and 2 large load dzwand are as- ‘ 2r3 L2 o 00
sumad s that a current pulsa, A5 shoun in
Fig, 34 (E).flows through 9. The full-cycle
average veli2 of current, 1, is related to
the puisz emalitode, Ip’ by
Io=1 == EETJ;—- (6)
P2 Toy  Eilgn
§EPR0DUCIB1LITY oF
RIGINAL PGy 1g p O{%ﬂlﬁm
R
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11.18 GENERAL PHILUSOPHY OF SOLVING NONLINEAR SIMULTANEQUS EQUATIONS

Table 20 illustrates the different methods for solving simul-
taneous equations. The design equations are nonlinear constrained
which shows the increase difficulty in performing the computer program.

After further review and working with TRW Systems Computer
Department, a penalty function algorithms, Table 21 , was used
to solve the simultaneous equations. Each equation is solved as
an unconstraint equation and its error value is determined and
after iterative calculations, the solution coverges.

The Sequential Unconstrained Minimization Technique (SUMT)
computer program developed by Research Analysis Corporation,
McLean, Virginia, was used to solve the nonlinear constrained
simultaneous equations. The program is basically a research
toel and has many internal options depending on the nature of
the equations to speed up the convergence to obtain a minimum
solution.

SUMT is a computer program capable of minimizing a mathematical
problem which has the following form:

Minimize f(x)
Subject to: gj(x) > 0 j=1,2....m
hj(x) =0 j=mel,...mtp = n

X = (x] x2....xn)T is a n-dimensional column vector.

~ Table 22 summarizes the functional designs solved by the
SUMT Computer program. Hand calculations have been performed and
the computer solution seems to be the minimum weight design in all
cases. The computer option to speed up convergence of a solution
can produce some unrealistic solutions. Continued work is needed
to determine the correct option to solve the design equations.
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METHODS TO SOLVE SIMULTANEOUS EQUATIONS
(5

Programming

v V
Linear Programming Nonlinear Programming
(Finite Algorithm: Simplex Method
[Dantzig 1963])

V2 W
Unconstrained Constrained,
A 4 , W A 7 ] L 4
Quadratic Nonguadratic Linearly Constrained Nonlinearly
‘ Constrained
v ' 0%
Quadratic Minimand . Nonquadratic Minimand

(Finite Algorithm for Convex
Case, [Lemke, 1962, Cottle & Dantzig, 1968])

Increasing Difficulty ::>

TABLE 20
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METHODS TO SOLVE NONLINEAR CONSTRAINED EQUATIONS
T A

Penalty Function Algorithms

I

v
Exact
(Parameter Remains Finite)

Va N
Unconstrained Unconstrained
Minimum Penalty Stationary or Saddle

Function Point Penalty Function

TABLE 21

v
Asymptotic
(Parameter Tends to 0 or °°)

|

7 ¥ v

Interior Mixed' Exterior
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FUNCTION DESIGN

INDUCTOR

FILLED WINDOW
POWER LOSS

CORE SATURATION
WEIGHT - MINIMIZING

SINGLE-STAGE INPUT FILTER

FILLED WINDOW

CONSTRAINTS

CORE SATURATION 1 CONSTRAINTS

ATTENUATION
RESONANT PEAKING

POWER LOSS
WEIGHT - MINIMIZING

TWO-STAGE INPUT FILTER

FILLED WINDCW (2 CORES) W
CORE SATURATION (2 CORES)
ATTENUATICN >
RESONANT PEAKING

POWER LOSS
WEIGHT - MINIMIZING

TABLE 22

CONSTRAINTS



The two-stage LC input filter is used as an example to show the
computer solution and is contained in Appendix 11.19.

Effects on total weight due to changes in component parameters
or design requirements can be easily made to determine relative sens-
itivity and to determine areas where great improvement can be gbtained.
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11.19 EXAMPLES OF SUMT APPLICATION IN OPTIMUM DESIGN

11.19.1 'Single Stage LC Input Filter

A common element used in DC-DC Converter is an input filter to basically
attenuate the switching current drawn by the switching regulation in order
to eliminate any noise from being fed back into the primary power source,

<+ Inductor »

L
Ern C Eout
. o
Figure 35. Schematic of Single Stage LC Input Filter
Figure 35 illustrates the basic schematic of a single stage LC input

filter where L is the inductance value of the input choke, R is its winding
resistance and C is the output capacitance value.

The first equation for the inductor assure that saturation does
not occur.

B,NA - L Ip =0 (1)
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The second equation for the inductor is to insure that the window
area of the toroidal core is completely filled in order to obtain an
optimum design,

| /K
S L L. (2)

The next design is to insure meeting the allocated power loss for
the radiation.

4o F NVE-RA =0 (3)
The attenuation characteristic of the filter must satisfy the electro-

magnetic interference requirements for the DC-DC converter at its basic
switching frequency.

(1 - 42 F2 LC)2 + 4n2F2R2C2-G"2 = 0 (4)
where:

K = Qutput capacitor density

P = Resistivity of copper

R = Winding resistance of the inductor

Bs = Allowable flux of the iron core

The unknown values to be determined to optimize the design are:

A = Iron core area

Ac = Copper turn area

L = Value of inductance

C = Value of capacitance

N = Number of turns for the inductor
Z = Mean length of iron core.

Because of the complex nature of the equations, the close form solution
can not be readily obtained using the LaGrange Multiplier technique, shownin
Appendix 11.15. Computer optimization technigues must be used to solve
for the minimum weight value.
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A1l LC filters used in the power circuit of DC-DC converters are
very efficient and therefore have very high Q factors when they are
considered at their resonant frequency. Input ac disturbances will
be amplified at the output terminals. The equation controlling this
efement is:

L-C{BxR)2=0 (5)
The equation for the total weight of the single stage input
is: ' :

WT = 4FCACDCN¢ﬁ'+ DiAZ + KC (6)

The known or specified values are:

B = Peaking of value of filter

G = Attenuation

F = Operating freguency

Fo = Winding factor

Fw = Window fill factor

Ip = Peak current in inductor
DC = Copper wire density

D. = Iron core density

11.19.2 Two Stage L-C Input Filter

Because of the difficulty in controlling the resonant peaking of the
input filter and at the same time maintaining low losses, the two stage
LC input filter has been developed and is being applied to new power con-
ditioning equipment designs.

—MA Pron A Y o .
R1 L1 I R2 L2
E 7" - C2 E
IN Out
R3
- ) .

Figure 36. . Schematic of Two Stage LC Input Filter
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Figure 36, illustrates the schematic of the two stage LC filter
with internal damping to control resonant peaking without a penaity of
power loss. Resistances R1 and RZ are winding resistances of L1 and L2.

The total resistance contributing to loss in the input filter is:
4‘/quch 4/EEFCN2

e v (1)
Ac] Ac2

R=RI +R2 =9

The resonant peaking of the first stage filter section is:

B2= 3 5 (3)
(_2) . D2 b-Ea-Lz E.z_]
C] C1 Ll C1

O

is:

R3 = D¢/ — (9)

The relation to control the resonant peaking of the second stage
section is:

= = K (10)
The attenuation characteristic of the total two stage input filter
L, C c 27"
G:Lii(LTl,i(L)] (1)
L] C] f1 D C] f]

The resonant frequency of the first stage section is:

fl = [2n wL]C] ]t

is:

(12)



The design equations for the first stage inductor are:

BNA, - L1Ip =90 (13)
and
Nl ACI - El.+ iﬁi = () .
mF, W 2 (14)

The design equations for the second stage inductor are:

BSNZAZ - LZID =0 (]5)
and
N2 A2 - E§.+ EEE = () (16)
it Fw 21 pl

The total weight equation for the design is

4FCAC1 Dc N1 1

L, Weight —b

NT /ﬁ+D1.AZ

]

+ 4F D N, VA, + Di A

CACZ c 2 2 2
L, Weight —————num

Z,

-+

K] C] + K2 C2 + K3 R3 (17)

Capacitors & Resistor R3 weight
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The known or specified values are:

m M m T =
= O

1941

p=)

oS B v B B v B v = R v v
- 0

=

Total resistance of R1 and R2 for the two filter inductors
Resistivity of the copper wire

Switching frequency of the load current

Winding factor

Window fill factor

Peaking value at resonance

Maximum Flux density in magnetic cores

Attenuation factor

Peak current drawn load through inductors

Specific gravity of copper
Specific gravity of magnetic core
Inductance ratio between L] and L
Density of capacitor C]

2

Density of capacitor 62
Density of resistor R3

The unknown parameters that must be selected to minimize the total

weight are:

Core area of first stage inductor

= Copper area of winding in first stage inductor

Number of turns for first stage inductor

Mean length of magnetic core for first stage inductor
Core area of second stage inductor

Copper area of winding in second stage inductor
Number of turns for second stage inductor

Mean length of magnetic core for second stage inductor
Inductance value of first stage inductor

Inductance value of second stage inductor

Resistance of first stage inductor

Resistance of second stage inductor

Damping resistor in the first stage section

First stage capacitance value
Second stage capacitance value



There are 15 unknown parameters and 11 design constraint equations.
Since this example represents the most complicated problem processed by the
SUMT program, it is selected to illustrate the SUMT application in Section
11.19.3. '

11.19.3 Computer Solution for Weight Optimization of a Two-Stage Input
Filter

Equations (7) through (17),contained in Section 11.19.2, are the
algebraic design equations for the two-stage LC input filter.

Table 23 shows the requirements and specified values of constants used
in the design equations.

Table 24 is a 1ist of unknown substitutions used in the computer pro-
gramming. Table 25 is the 1list of constants used in the computer program.
Table 26 is the list of design equations for programming.

Table 27 is the Fortran Program of the input data to SUMT Computer
program.

Table 28 lists the results of three different designs based on the value

of the second stage output filter capacitance value. Depending on the ac
current rating of the capacitors and the derating policy for the design,

different values would have to be used. The selection of the particular

capacitor value to use will be computerized once a realistic data bank is
established.

This problem was solved on a time-share remote terminal with a run
cost between 20 to 35 dollars.

The design equation can be modified to minimize the total loss with
a fixed weight, or a parametric curve can be generated that would show min-
imum weight as a function of loss with all other design parameters held
constant.
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RESULTS OF TWO-STAGE INPUT FILTER COMPUTER DESIGN

(Design Example)

A tvricat novwer processor filter design is made to

test tlie characteristics of the SUNT program.

Po

Eo

Ro

57 Pi = 55l
157 Ei = 20-50v
4.5

el
M
=
-
b |
s}
f1
™ |
-~
-2
W

0.3 K) = 372 Kg/F
0.3396 0 K2 = 2600 Kg/F
0.002 (Attenuation)
1.724% 107

Fe

Bs

Ip

1/3 {Ratio of L2/11) Fyr

Dc

Di

TABLE 23

2 (ratic of m2an lencth ner turn

t; circumference
6.4 [erer/ﬂz] of core section
2.75 A

0.4 (Winding factor)
8920 (Spec. gravity of copper)
7837 (Spec. gravity of magh. core)

20 103 (Switch Frequency)



LIST OF SUBSTITUTIONS

The substitutions in the equations are:

Foe
Veyo=x,
= -
A v
e "4
Ej.r-:z' = X
L= X
b, - = X
¢ = %
L2 = X
n T Xp
2= Xy,
Ri = X3
"y *14
R T
v = X

TABLE 24
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LIST OF CONSTANTS

The constants are:

"1
M2

M3

Cel

Cod

198

4 FcDc
= Di

= q‘.j»’FA
= HIR

= 1/2y

= In/Bs

T F‘.‘!

0.5

1%

[
i

1
L=

oy

"

[
R

TABLE 25



LIST QF DESIGN EQUATIONS

1. VAL = [\ns + X4 - r:m] c(1)
I 2 enva2] o
o VAL = |u3 x X1 x x2b - X13-%37] c(2)
- Y -”-2 2
3. VAL = |43 x4 x5° - x14 X6 ¢(3)
- ‘ -
- ‘ "
A, VAL = :(1 + x152) X9 - €04 [xma + X152 (xg-m (1+:fzf:))LJ}::=i“’-}
5. VAL = ;:-14 410 Co63 - X10 Co62 X15 X16 - 1 X16° X0 mt c(5)
D
6. VAL - ()(7 xg Y162 - 152)  ¢(5)
7. VAL = (:-nz x2? - %7 ms) c(7)
8. VAL = (><42 52 - 8 HG) (s
9. VAL = [H.? X7 ¥3 - M5 X11 + 118 X1 ] c(9)
10. VAL = (M? X5 X6 - 115 X12 + 18 X4) C€(10)
. AL = (X8 - X7 a<r-z.) c(11)
12, v = (x10 - kejc(iz)
0.F. we = M1 XD YO %32 + M2 38 X174 K1 X9 + 11 X4 52 g2 - 12 %42 i12

¥2 X0

¢(1) through C{12) are multipliers.

TABLE 26
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FORTRAN PROGRAM

}“FbRTﬁh‘N PROGRAM AS INPUT TO SUMT PROGRAM

31700 e RO EAMN MATNP [NATA L OUTPYT . TAPEC = DATALTAPEAY . oo e . - ..
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CAIIYD e 1 PSTAL. Gy e XL01003 4 XT01020, XZT(L00), XM2(137),.XP1(160), PPP,.

23217 DOPDITL,y Py P00y, NOTT, PGRANTLI0LY . NIAGI157)Y,

hh ¥ T oORTYR_ADILY, MYRTe, NUMINT, NPUASE, MSATIS

;22 .- OOMMIIMITINCSLTMMAY & i o e e e e e e e

£:233 £AMMIY FENALS Hy H1, M7

L1247 AEMMAN ZOPTNGZ NTL NT2  HT I NTL NTS MTR NT7 ,MT8,HMTS, NTL0
03297 e e GOMYON P LOOPT L NEY DL o NXDP2 s XEP§4- X702 o o i e

T 2a] ARMMANPLOYRTMLN DT

L7271 BEAL T0,K L1 L2.,K2,89,Kkr

ri?sy - MAMEUTET/OON/ Ty e P TP 3NG4 s Ry PHI NS  FH N T4 F KR K2 L M0

Ly MAMT | [ST/OP1 /EPST,THETAT yRHATY, RATIO, THIAY

393463 CONAMI LT T /NP NT L T 2y MT NT L NTE TR NT T, NTA, NTQ,NT2]

{3789 MAMELTST/TORP/ZXIPL,XE 2, HEYDRL LN X0P? i . e

1377 HAMZL TST/ETHIY T

Ti333 REANLR L 1ONY

L72%0 O HRATTT AR L COMN) e e —— -

031352 nEAR(L,PR1Y

S RT HATTZ (R, P21)

23377 T AT G OP e e e e

231347 HITTZ(F 4071 :

~123] 2TAT(E.TO™Y

12410 WAITTT (e, TOPY .. . ... e e e e

L3612 10 RE8NLG . W THY

Lis2] ACER ISR RN

] b S S o T

Cibay X3I=wT(2)

L1453 Xu=¥T(4)

HOM e . XR=YTLS) - C e e e ien o

£a47" LR=¥T (&)

93447 X7T=¥I(7)

A B X8=¥T(A) e

S X1=2vYTtm)

kb R ¥12=¥T7010)

TABLE 27 OR%E\?DUC@J
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FORTRAN PROGRAM

Cpan2s S £ € 5 & & 1 § PP i s o e
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"FORTRAN PROGRAM

SN ¥ 10 - SU7 ¥ 1'% DO

CiSk=1,/C(5)
G{RYI=1,/0(F)
R X & 5 T8 TS ol & TSN PSRRI P
CtrY=1./C{™) ’
neAi=t, /04D
ol B N1 I AP 5 N s ) o AN
ce1y=t./2011)
nUL2)=1.200102)
L uvxf’(s,qa3=)_,______..ﬁ._mm__ e e .
TCLAYIRIAC(LI =, {1} 402 = ‘1Cl?l.‘“(o)' -ClTI *C(hl'“ oLy
QTSF'uV(Bi*"(ql BLCAG) 430 IE1=¥ 06, ¥ {T)=*,0(T7), ¥{gy=* qC(F)
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e T YT LE G X TN Y e e e e e e e e s e e o

I3T = IST + 1
. CALL SHUMT(ICD)
e L  IFETERLENLAIND T 20 i e e mm e n . -
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3001 EAPMATL*LSUMT MONYFRGED TN 4 SOLUTION FR0v STARTING POINT*,L3)
60 T 35 .. e e e s e - [PV

26 HATTE(F,92 1“!T’T
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X E T Y PN o o o e it e e ———
Ty T (Y #Y(LT) )
TXL=K (L) *"?
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FORTRAN PROGRAM

T (Y ¥e 2 . .. ‘. T e e e e e mme i e mmmmsan -
THR=(E}*r2
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FORTRAN PROGRAM
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"FORTRAN PROGRAM
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FORTRAN_PROGRAI
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FORTRAN_ PROGRAM
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"FORTRAN PROGRAM
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R2

1

R3

"

t

X1
X2
X3
x4?
X5
X6
X7
X8
X9
X10
X11
X312
113
X14
X15
X16

e
L p—

COMPUTER SOLUTIONS

RUN 1
Kc = ZOuF

£3.83 10_6

29.04

5

0.964 10

25.23 1078

15.82
0.971 107°

185.19 1070

61.73 10°°

71.68 1076

20.00 107°

50,46 10”3

38.43 10>

27.57 103

12.03 103
1.03

1.381 19°

RUN 11
Ke = ]OuF

47.86 107°

29.75

1.028 197%

23.15 107°

20.51

1.144 10°°

207.19 107°

69.06 107°
75.55 1970
10.00 107°
52.73 1073
42.27 1073
27.68 107°
11.91 1073
0.737

1.272 103

1.27
104 .5 or.

TABLE 28

RUS 111
Ke = 4047

21,12 107°

25.03

0.616 107°

13.68 1078

14.72

0.625 105

6
6

87.85 10~
29.28 107

67.5 10°°

40.00 107°
37.45 1073
28.62 1073
27.56 1973
12.03 1873
0.7

2.06€ 10°

0.80

147.0 ar.



11.20 FORMULATION OF MATHEMATICAL EQUATION FOR A SERIES SWITCHING
BUCK REGULATOR

Subsequent to the development of the design equations for a two-stage
input filter, contained in Appendix 11.19, the next logical step is to
develop the generalized design equations for the series switching buck
regulator.

Figure 37 illustrates the basic schematic of the power stage, which
includes the two-stage input filter, power switch Q, commutating diode D,
and output filter.

Equations (1) through (6) list the total loss for the total power
stage including all inductors, capacitors, transistors and diodes. The
nature of the losses includes core loss, copper loss, steady state con-
duction loss, and switching losses.

Equation (7) controls the resonant peaking of the two-stage input
filter.

Equation (8) determines the attenuation of the two-stage input filter.
Notice the design of the output filter inductor enters clearly eq. {(8).
The three basic requirements in equation (8) are: (1) the EMI requirement,
(2} the switch current being impressed on the output of the input filter
and (3) the filter attenuation characteristic. |

Equation (9) determines the first-stage resonant frequency.

Equation {10) through (15) control the design of the three filter
inductors used in the power stage. The design constraints are filled
window and free from saturation.

Equation (16) determines the ripple appearing at the output terminais
of the power stage.

Equation {17) relates the series resistance in the output filter capac-
itor to the value of the capacitor.
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POWER PROCESSOR DESIGN EQUATIONS

a) SERIES BUCK REGULATOR SCHEMATIC

R4

Figure 37.



Equation (18) determines the ac current in the second stage capac-

jtor 62 of the two stage input filter.

Equation (19) is the total weight of the total power stage for the
series switch buck regulator.

Two more additional design constraint equations need to be written
to include the effect of the feedback control system to determine output
impedance and line rejection characteristics of the power stage. Addit-
ional development is necessary to develop these design equations.

The known or specified values are:

P0 = Output power ,

e = Total efficiency of power stage

Ei = Input voltage

EO = Qutput voltage

FC = Winding factor

Fw = Window fill factor

p = Resistively of copper wire

VST = Transistor collector-emitter saturated drop
Vbet = Transistor base emitter voltage drop
Tsnt = Transistor switching turn-on time
Tsft = Transistor switching turn off time
VD = Diode forward drop

Tsnd = Diqde turn on time

TSfd = Diode turn off time

T = Diode recovery time

re
Oer(F)= Core loss factor for output filter inductor L3

(PE)] = Peaking value of two stage filter
(PE)2 = Ratio of L2 to L] inductance
8 ..B_,,B 3= Operating flux density of the three inductors

s1°7s2° s

r = Qutput ripple

RCk = ESR per tube of output capacitance C3

Ck = Microfarods per tube of output capacitance in C3
Di = Specific gravity of magnetic core

DC = Specific gravity of copper wire

Kc]’ Kcz’ KC3 = Density of capacitors C], C2 and C3

KR4 = Weight of damping resistor R4.
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The unknown parameters that must be selected to minimize the
total weight are:

A, A.., A, = Core area of the three inductors

AC],lAczf Aci = Copper area of the winding of the three inductors
Nys Ny, Ny = Number of turns for the three inductors
Z], 22, 23 = Mean length of the magnetic cores of the three inductors
L], L2, L3 = Inductance value of the three inductors
R1, RZ’ R3 = Resistance of the winding of the three inductors
R4 = Capacitor CI damping resistor
F = Switching frequency
RC = Qutput filter series resistance
D = Damping of input filter
C], 02, C3 = Capacitance values

f] = Resonant frequency of first stage of input filter
RMS current in capacitor C2 of the input filter

—
"

These equations demonstrates the manner in defining the characteristics
of the series switch buck regulator.

These equations have not been checked by thé optimization program
which can be performed in the next phase.

In this example there are 27 unknown parameters and 14 design constraints,
The computer optimization program used-to solve the previous set of equations
for the inductor single stage filter and two stage filter can handle up to
100 unknown parameters and therefore should be capable of solving these
design equations to obtain a minimum weight design.
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0) DESIGN EQUATIONS

Y Input Filter Loss:

Winding Resistance Winding Resistance

of L of L2
0y e ___(_@_ (4F<.N SR P | 4R Nz JAL P
) 4 S Ac. Aca
® Transistor Loss: Transistor Turn-on
| Switching
Saturated Drop Base Drive £ (E -E.)E. ] < F
(2) P — (@\'St _+O.( P;;Ube‘t) E° 2LL3ELF
A €L E: A
Transistor Turn-off
: Switching
R (E- t,.)Eo]
3 + E e 'Z.L%t:-\ T F:
W
. Diode Loss: Diode Recovery
and Turn-off
Forward Conduction . 2 (t E“)on[
('.3) 0 = (Ei-Eo) B No + E"'F[Eo- 2LaELE {—Rm*_%nt}
d BB \Z

Diode Turn-on
E.T { , (E E..)t]\
+ ‘—" = 2Lat F Sicl
{ L

(1)

(2)

(3)



91¢

(4)

()

Output Filter Inductor Loss:

lDo R &)EOLE&-EO)};O&'(LF)_

Na Ec
(R [(E-EEa1?] o 4FNadAs
+{(Ea) +[IZLE1F ] } ? Aca

Output Filter Capacitor Loss:

— | _(E;-‘Eo) Eo]’l _
b = 2 12LELF Ke

Constraints: (Total Power Loss)

(¢)

1"

Pi + P+ B+ P + Re= B

{Core)

(Copper)

(4)

(5)

(6)
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Constraints:

e Input Filter Peaking: (PE)

(7) CPE)“Z = - \+ L (7A)

9—’”—) + D"'[\ G - Ll”
First Stage i (R G

Second Stage

(PE) (78)

e Input Filter Attenuation:
‘05
oE Y}
\[k.%('lcxi;)

2 - - . ‘5&\:——27 2
(_ze., g;n?ﬁﬁa) +[. |, (€L EBe (0 TEe _ )]
LF |

€  Ed e < TE.

(8) €

(Switch Current)

(EMI Requirement)

—

]

LaCa [ E > L= (F11ter Design Value)
==k [ — L S ) (8)
¢ VE/ D c-. {:‘

(:Ct‘) '&. = i (First Stage Resonant Frequency) . (9)
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¢ L (Filled Window)

e o
TN, _ % L ¥ = 0O
UO) * Fw ATy vz o

o L Saturation

N ( \
(\\) NA — s =C | (1)

o L (Filled Window)

(lz) -C"I-N'L _ 1 JK" :_—O
J v Yw 2 T80 2 (12)

'y L2 Saturation
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(14) Aot

US) Nz Aa-

L, (Filled Window)

T Ew 270

L3 Saturation

LR -

2

% B -

(Ei-E.) Eu]

Converter Qutput Ripple

(16)

Relationship of RC to C

- C {QC'IL
() =

8L3(3

3

= Re

2i_ELF

<> 3

-8 @

=
rin % of E0
+ 4C3 R(, EL ——— r
Eo (EL-EL)
CK: uF per Tube
RCK: ESR per Tube

(14)

(15)

(16)

(17)
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s Relationship of C, to (Irms . in Q

(&) (m = B+ E[EEETT-8 0w

Eeo LELF €L

C,>- (I ) K
2 ac rms Ce

K., is puF/rms. Amp.

c2

Wt. to be Optimized:

Iron Weight for L], 2 and L3 Copper Weight for L], L, and L

2

Dr [A 3 +A151+ Az 33J A+ 4FD<.[AL.N JA 4 AczNw_\U-\'z_‘*'Ac.sNaJAa]

3

Ist Stage
st Stage 2nd Stage 3rd Stage Dampingg
Capacitor Capacitor Capacitor Resistor
Weight Weight Weight Weight

+ K, + Ka2C. + KezCay + Keq (19)



11.21 AN EXAMPLE OF POWER PROCESSING EQUIPMENT COMPUTER SIMULATION
USING TESS PROGRAM

This section describes the simulation of a chopper regulator using
the TESS transient computer program. This program accepts nonlinear
elements (diodes, transistors) as well as mathematical expressions. The cir-
cuit is shown in Figure 3g(A). The power stage is simulated with the
Transistor T1 and Diode D1. The control loops are simulated using the
operational amplifier A2 and A3. Al establishes the reference frequehcy
for the system. The voltage source EB is controlled by a subroutine FEB
which is a function of the voltages VRC and VRTH. A timing diagram is
shown in Figure 38(B}.

The simulation has been made specifying the integration routine "GEAR."
This routine has the ability to control the step size with little depend-
ence on the circuit time constant, making it very fast and efficient. One
run has been made over a 300 microsecond period.

The TESS program allows the user to specify models of semiconductors.
They can be generated by the user or they might be available through a
library data bank. The description of the three models used in this

program is given below:
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TIMING DIAGRAM

OSCILLATOR A) I | [

(NODE 14)

NODE 15 VRC | N k

1

INTEGRATOR o~ — T~ —
OUTPUT {19) gy=— — =~ e . e - — N —

LEVEL DETECTOR [
(22) '
EB

T +30V

INDUCTOR W [ - __

VOLTAGE VL3=EAC —
= 210V

Figure 39
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a) Operational Amplifier : R

n 6
2 T Yy +
R J CT R¢ L ﬁi E
3 .
where J = ¥, x Open Loop Gain 1

R R

¢
E

1]

1. x VR¢

The saturation voltage is controlled by the two diodes and
two voltage sources to give approximately + J0V.

b) Diode Model

JD ¢

The current JD is expressed with the diode equation which has
the form:

- Q -
W =TI [egmy Vo]

where: VJD is the voltage across JD
Q =
ki = 38
I_ = Saturation Current (.7 E-11).

S
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c)

The capacitor C is a function of the current JD to simulate
the storage time of the diode

= Q
C CO+JDT KM
t = Time Constant
CO = Capacitor Value for JD = VJD =0

CO is normally a function of reverse diode voltage but is set
to constant for simplicity.

Transistor Model

The transistor model used is a simplified Ebers Moll Model. The
saturation and cut-off regions are simulated by the two diodes
JDC’ JDE and the two current sources JN, JI.

N d. J d P
N YpE N7 By
d. J d 1

J = =

I 1 Inc I Bre]

By and g, are the normal Beta and inverted Beta, respectively. The
capacitors Ce and Cc are treated the same as described in the diode
model.
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Table 29 illustrates the format of the input data to characterize
the series switch buck regulator. Table 29(A) defines the model for the
transistor, diode and operational amplifier. Table 29(B) defines the
other components for the circuit shown in Figure 38 . Table 29(B) and (2)
establish the initial conditions in all components. Table 29 (D) defines
the subroutine FEB to control the power switch T1 as a function of the
signals from the reference oscillator and level detector.

Figures 39, 40, and 41 illustrate the plot of the operational data
from the computer run. Figure 39 is the output of integrator AZ. Note
that the integrator waveform goes through to a negative value. This
signifies the effect of the storage time of the power transistor T1. This
is an important parameter to simulate in that it effects the 1ine rejection
characteristics of the series switch buck regulator.

Figure 40 illustrates the output volfage including the output
ripple. Because of the initial conditions specified, the output has not yet
reached an equilibrium condition and needs another two switching cycles
to complete the transient. The peak to peak output ripple was checked with
the design equation (16) of Appendix 11,20,and was found to be the same,
thereby proving the mathematical desicn equation.

Figure 1 illustrates the current in. the power diode D1. The diode
model included reverse turnoff current and causes the high negative current.

The total computer machine operating time for the example was 7.5
minutes to simulate 300 microseconds of the series switch buck regulator
operation.

The different models must be modified to eliminate some of the high
frequency parameters that do not effect the output performance character-
istics but contribute to some internal switching loss.

During phase II, the model will be revised to include the startup
transient, ac input disturbances, ac output disturbances, step input and
output disturbances and output fault conditions.
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This data will be used to determine interactions between power and
control circuitry, to check the mathematical design equation and to aid
in developing feedback control loop analysis.
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TESS PROGRAM INPUT

.

NAME , 734330+ BACHMANN.M,

MODEL DESCRIPTION

MODEL 2N5154 (d-E-C)

ELEMENTS

RB.B-1=1
CCLL:Q=01IZUG.E-lZ'PTOC-JDC'JI.36.)
CEs1=E=Q1(600 E-12+PTIE,JDE4J4436.)
JOE41-E=DIODE EQUATION(.13E-19,36.]
JDC,1-C=0I00E EQUATION(.7E-11,38.)
[JHyC-1=Q2¢(P3N, JDE)
IJI,E=1=02(PBIJOC}

|[DEFINED PARAMETEZRS

PTOC=20.E-7

PTOE=15.E-7

PBN=100.

PBL=4.

FUNCYIONS
Q1CA,84CsD,E)=LA+3*{C-0)*E)
QZ(ALBI=(A*37 (a1 D)

MODEL 1INXXXX (A=C)

ELEMENTS

lJD.i-C=ﬁIOBE EQUATION{.7E£~11,38.)
RyAri=a02

FUNCTIONS

G1(A+B4C,0)=(A+8%C*D)

MODEL GP (2-3-5-0)

ELEMENTS

Ry2-3=1E7

‘c e1-0=1.59E-7

[ROy1-0=1€5

J51-0=01 (vR)

EBL,0=-72-9.3

EB2,0-829,3 .

JUL,7-1=0DI0DE ZQUATION (.7E-11433.)
JG2,1-8=DI0UE EQUATION (.7E-11,38.)
[ROL 44-6=100

E +0-4=01 (VRO)

FUNCTIONS

QLEAN= (1, *A)

CIRCUIT OESCRIPTION

CHOPPER CONVERTER TRANSIENT MODEL

TABLE 29(A)



6¢é

ELEMENTS

£1,0=1=4]
RL1,1-2=.05
L1,2-3=600£E~-06
Cle3-4=150E-6
RCL,4=-0=2.5

RL2 43~5=.03"
L2y5-6=2030E-b
C2yb=0=1JE-b
RSW,6=8=FUNSTION FEBIVRC,VRTH, TTHELEACH
CRSWe6=-8=1E-9
Di,0-6=MO0EL 1NXXAX
RL3 18'10=o 0s
L3,106-11=20CE-6
CCy11-11A=200E=5
RCO,11A-3=.G6
RO,11-0=2.5
EREF.0-20=-10
RREF,20-17=20E3
ROC,11-17=23E3
EAC,0-21=21¢VL 3)
RAC,21-17=2CE3
LCy11-16=1E-7
RCC,16-17=1E3
CFs19-17=1E-8
A2,17-0-13-U=MADEL OP
A3+19-0-22-0G=MODEL OP(CHANGE 3=1.59E-10)
RTH,22-0=1E4
G01,12-0=1E-9
RO1,14~12=27.4E3
R20,13-0=1E4
R30,14-13=1F4
Aly12-13=-14-0=M0DEL GPUCHANGE G=1,59E-%)
C,14-15=1E-10
RC,15-0=1E4
QUTPUTS

VRSW,IRSH

1CZ,EAC

INITIAL CONDITIONS
TL3I=4, 33132

VL= 9.26422
VCF=3.907956~1

TABLE 29(y)
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VCEA2=. 440753
vC0=9, 34397
IL2=1.025%5%
VCA3=-9.35055
¥CA1=-9.18625
VG2=39.2307
ILi=1,06253
Vvio1=4.91137

- WCC=1d.d062

VC1=39.9042
VRAZ=-9,41937E-3
VRTH=-9.85203
VR0=9,95247
VRC=-18.1737
VR20==4,450086

VRL3=. 210566

FUNCTIONS

21tA)=(1.0%A)

RUN CONTROLS

STOP YIME=330E£E-6
COMPUTER TIME LIMIT=15
INTEGRATION ROUTINE=GEAR
MINIMUN STEP SIZE=1t-30
ENOD

TABLE

29(C)
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10

el

100

200

500

600

730

FUNGCTTON FEF(VRCVRTH,TINE}
DATA IFL,XT+XVRI4XURTH/L*Q,/
IFCTINE=-XT) 20, 24,10
IFIXVREC.GT18.5) IFL=1
IF(XVRTH.GT.9,.8) IFL=)

IF (VRTH.GE«=-8+1 GO TO 540
IF{VREC.GELL1.) GO TO 103
IF{IFL.EQ.1) GO TO 20C
IF(IFL.ET.0) 60 TO 600

JIF{IFL.Ed.1) GO TO 200

FEB=vrC~-1.

IF {(FEB.GE.5.) FEE=5.
GO TO 700

FE3=5,

G0 §0 7400
IF(IFL.EQ.D} GO TO &0
FEI=5,~(VRTHt3.)

IF (FEB.LE.D.} FEd=].
G2 TO 700

FEJ=0,

GO TO 7400

CONTINUE

XYRTH=VRTH

XWRC=VRC

XT=TIME

RETURN

END

TABLE 29(D)
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